FACULDADE IMED

**MESTRADO EM ODONTOLOGIA** 

LARA DOTTO

IMPACTO E NECESSIDADE DO USO DE SOLUÇÕES IRRIGADORAS E SOLVENTES EM ENDODONTIA: SÍNTESE DE CONHECIMENTO

PASSO FUNDO

2021

LARA DOTTO

## IMPACTO E NECESSIDADE DE USO DE SOLUÇÕES IRRIGADORAS E SOLVENTES EM ENDODONTIA: SÍNTESE DE CONHECIMENTO

Dissertação apresentada ao Programa de Pós-Graduação em Odontologia da Faculdade IMED, como requisito parcial à obtenção do título de Mestre em Odontologia.

Professor orientador: Prof. Dr. Ataís Bacchi

Prof. Dr. Gabriel Kalil Rocha Pereira (coorientador)

PASSO FUNDO, 2021

Lara Dotto

## Impacto e necessidade do uso de soluções irrigadoras e solventes em endodontia: síntese de conhecimento

Dissertação apresentada ao Programa de Pós-Graduação em Odontologia da Faculdade IMED, como requisito parcial à obtenção do título de Mestre em Odontologia.

Banca examinadora:

- Prof. Dr. Ataís Bacchi Faculdade Meridional IMED, Passo Fundo (orientador)
- Prof. Mateus Bertolini Fernandes dos Santos (membro externo)
- Prof. Renata Dornelles Morgental (membro externo)
- Prof. Aloísio Oro Spazzin (suplente)

#### Agradecimentos

À **Faculdade Meridional (IMED)** por abrir as portas para me proporcionar muito conhecimento técnico e científico durante todo o curso e, principalmente, realizar o sonho de fazer mestrado.

Ao **Programa de Pós-Graduação em Odontologia**, em especial a coordenador do curso, professor Rafael Sarkis Onofre, pela oportunidade de fazer parte da PPGO Imed.

Ao meu **orientador professor Dr. Ataís Bacchi** pela orientação e por ter acreditando e confiado em mim a realização deste trabalho.

Ao **co-orientador professor Dr. Gabriel Kalil Rocha Pereira** pela ajuda e disponibilidade em todos os momentos da realização desta pesquisa. O projeto de pesquisa relacionado à esta dissertação foi apresentado a banca de qualificação no dia 01 de abril de 2020 e aprovado pela Banca Examinadora composta pelos Professores Doutores Lilian Rigo e Rodrigo Alessandretti.

#### RESUMO

DOTTO, Lara., **Impacto e necessidade do uso de soluções irrigadoras e solventes em endodontia: síntese de conhecimento.** 2021, 151p. Dissertação Mestrado em Odontologia – Programa de Pós-Graduação em Odontologia. Faculdade Meridional, Passo Fundo, 2021.

O objetivo geral dessa dissertação foi verificar o impacto e necessidade das soluções irrigadoras e solventes no tratamento endodôntico através de diferentes métodos de síntese de conhecimento. Para isso, este trabalho foi dividido em 3 artigos com os objetivos descritos a seguir: (I) mapear, por meio de uma revisão de escopo, se os irrigantes do canal radicular influenciam as propriedades mecânicas dos dentes tratados endodonticamente (DTE) e quais propriedades podem ser afetadas; (II) mapear as evidências sobre o uso de solventes para dissolução e remoção de guta-percha durante retratamentos endodônticos, através de um revisão de escopo; (III) avaliar o efeito dos irrigantes de canal radicular na resistência de união entre os cimentos endodônticos e a dentina do canal radicular, por meio de uma revisão sistemática. Os principais achados são: (I) A maioria dos estudos comprovou um efeito negativo de todas as soluções nas propriedades mecânicas de DTE. Além disso, aumentos na concentração da solução e no tempo de exposição intensificaram os efeitos deletérios; (II) A maioria dos estudos sugere que o uso de solventes pode prejudicar a limpeza do canal radicular, independentemente do tipo de instrumentação utilizada, e facilitar a presença de resíduos de gutapercha na superfície radicular, devendo seu uso ser considerado apenas se o comprimento de trabalho anterior não for possível de acessar, e (III) O uso de substâncias irrigantes capazes de desmineralizar a superfície da dentina do canal radicular e/ou remover a camada de lama dentinária remanescente parece aumentar, ou, pelo menos, não comprometer a resistência de união do cimento à dentina radicular.

**Palavras-chave:** Revisão, Irrigantes do Canal Radicular, Retratamento, Solventes, Adesão, Guta-percha.

#### ABSTRACT

DOTTO, Lara., **Impact and necessity of the use of root canal irrigants and solvents in endodontic: knowledge synthesis.** 2021 p.151 Dissertation (Master degree in Dentistry). Graduate Program in Dentistry. Meridional Faculty, Passo Fundo, 2021.

The objective of this dissertation was to verify the impact and necessity of irrigating and solvent solutions in endodontic treatment through different methods of knowledge synthesis. For this, this work was divided into 3 articles with the objectives described below: (I) to map, through a scoping review, if the root canal irrigants influence the mechanical properties of endodontically treated teeth (ETT) and which properties can be affected; (II) to map the evidence about solvents' use for gutta-percha dissolution and removal during endodontic retreatments; and (III) to assess root canal irrigants' effect on the bond strength between endodontic sealers and root canal dentin, through a systematic review. The main findings are: (I) The majority of studies corroborated a negative effect of all solutions on the mechanical properties of ETT. Furthermore, increases in the concentration of the solution and in the time of exposure were found to intensify deleterious effects; (II) most studies suggested that solvents' use may complicate root canal cleanliness, regardless of the type of instrumentation used, and facilitate the presence of gutta-percha remnants in the root surface. Thus, the use of solvents should be avoided and its use should only be considered if the previous working length was not possible to access without it; and (III) The use of irrigant substances capable of demineralizing the surface of root canal dentin and/or removing the remnant smear layer seems to enhance, or, at least, does not compromise the push-out bond strength of the sealer to root dentin.

**Key Words:** Review, Root Canal Irrigants, Retreatment, Solvents, Adhesion Gitta-percha.

## SUMÁRIO

| RESUMO               | 6  |
|----------------------|----|
| ABSTRACT             | 7  |
| INTRODUÇÃO           | 9  |
| OBJETIVOS            | 12 |
| ARTIGO 1             | 13 |
| ARTIGO 2             |    |
| ARTIGO 3             |    |
| CONSIDERAÇÕES FINAIS |    |
| REFERÊNCIAS          |    |
| APÊNDICE             |    |
|                      |    |

#### 1. INTRODUÇÃO

Dentre os desafios a serem enfrentados durante o tratamento endodôntico, destacam-se a limpeza, a modelagem e o desbridamento adequados do canal radicular para a eliminação da maior quantidade de bactérias, remoção de tecidos necróticos e qualquer reminiscência da camada de lama dentinária gerada pela preparação mecânica dos canais radiculares (1). Consequentemente, a ação da solução irrigante adequada durante a etapa química do tratamento endodôntico, pode culminar em uma melhor previsibilidade de sucesso e longevidade do tratamento. Isso é demonstrado a partir de estudos clínicos em que a recorrência da infecção é citada como o principal motivo de falha do tratamento (1, 2).

Soluções irrigadoras são também importantes, uma vez que além de auxiliarem na limpeza dos canais radiculares, podem influenciar e/ou afetar as propriedades mecânicas das estruturas dentais (3, 4). Muitos estudos tem identificado a relação entre defeitos mecânicos nessas estruturas, como a redução na microdureza na dentina radicular ou o aumento da incidência de fraturas verticais a partir do uso das soluções químicas (4, 5). Fatores como o aumento na concentração dos irrigantes, alta capacidade na remoção da lama dentinária e o tempo de exposição dessas soluções à dentina vem sendo discutidos como possíveis causas dessas falhas (4,6-10). Contudo, essa questão ainda é controversa e não está claro na literatura quais propriedades mecânicas poderiam ser afetadas por soluções irrigantes.

Nesse sentido e uma vez que as soluções irrigadoras são imprescindíveis durante o tratamento ou retratamento endodôntico, há estudos que mencionam alterações em dentina promovida pelo uso dessas substâncias modificando a superfície da dentina radicular e/ou promovendo alterações estruturais (11,12). Com base nisso, é lógico supor que qualquer alteração em dentina promovida pelo uso de diferentes soluções irrigantes também pode influenciar sua interação com o cimento utilizado durante a obturação do canal radicular (13). Tal situação, poderia interferir na adesão (força de união) entre tais substratos e também comprometer o selamento apical obtido, o que pode ser um fator predisponente para diminuir a longevidade do tratamento (13). Para isso, testes de resistência de união por *push-out* podem determinar a extensão da resistência ao

deslocamento de um material de obturação aplicado à dentina tratada do canal radicular (14-19).

Ainda, é possível que o tratamento endodôntico não tenha sucesso na primeira tentativa, sendo que de maneira geral, essa falha irá ocorrer em função de uma infecção ou reinfecção (20). Assim, quando os métodos químicos e mecânicos falham na resolução de um tratamento endodôntico, é necessário partir para a próxima etapa de intervenção onde, se possível, a primeira opção não cirúrgica a ser considerada é o retratamento.

Para isso, é necessário que o material obturador seja removido do interior dos canais radiculares para que possam ser remodelados e limpos novamente (21). Existem diferentes técnicas e materiais possíveis de serem utilizados nessa etapa: instrumentação manual ou mecânica (rotatória ou reciprocante) usada comumente no tratamento endodôntico primário; limas rotatórias produzidas especificamente para retratamentos, pontas ultrassônicas, instrumentos aquecidos e lasers Nd: YAG (22,23). No entanto, uma das barreiras do retratamento é acessar o material obturador para que sua remoção seja eficaz, especialmente quando está bem condensado causando resistência à penetração do instrumento ou, em regiões mais críticas como as de curvatura da raiz onde há risco de perfuração (20,21,24-27). Nesses casos, recomenda-se o uso de solventes (20,21, 24-27).

Os solventes são soluções utilizadas no retratamento endodôntico para amolecer o material obturador, geralmente a guta-percha (GP) (28,29). Sua utilização destaca-se, especialmente, quando o material obturador se encontra bem condensado e em raízes curvas, e se realizado uma força excessiva poderia gerar transporte e até perfurações dos canais radiculares (29,30). Existem muitos tipos de solventes, como clorofórmio, eucaliptol, óleo de laranja, endossolv e xilol, mas nenhum deles atende aos requisitos de um solvente ideal, pois essas substâncias devem ser não-tóxicas e não-cancerígenas para tecidos adjacentes, pacientes e dentistas; "promover amolecimento eficiente da GP; e ser viável por um tempo adequado e econômico (22).

Diversos estudos (31-34) a respeito da influência dos solventes nas propriedades químicas e físicas da dentina radicular como modificações dos níveis de cálcio e fósforo da sua composição (31), microdureza e rugosidade demonstraram não ser significativas (32). Mesmo achado foi obtido, quando as amostras foram expostas por um tempo prolongado à superfície radicular ou quando foi promovido o aquecimento dos solventes, os resultados demonstraram que essas soluções não seriam capazes de alterar a composição histoquímica da dentina (33) bem como suas propriedades físicas. Dessa forma, parece estar claro na literatura que não há relação dos solventes na modificação estrutural da dentina radicular. Contudo, ainda é incerto a eficácia ou efetividade dessas substâncias na remoção da guta-percha durante o retratamento endodôntico.

Muitos estudos (21-24,27,28,35-69) testaram a efetividade ou eficácia de limas e solventes na remoção da guta-percha residual ou a quantidade de material remanescente após a utilização de diferentes limas e solventes. Também há vários estudos avaliando inúmeras soluções em diferentes concentrações (3-10, 70-126) e seus efeitos nas propriedades mecânicas dos dentes tratados endodonticamente, assim como usando teste de *push-out* para analisar o efeito de diferentes soluções irrigantes na resistência de união *push-out* de diferentes cimentos endodônticos (14-19).

No entanto, ainda não está claro na literatura (I) quais propriedades mecânicas poderiam ser afetadas por soluções irrigantes (II) qual é o solvente mais efetivo ou se realmente seria necessário o uso de solventes na remoção do material obturador e (III) qual é a influência de diferentes soluções na resistência de união *push-out* em diferentes cimentos endodônticos. Dessa forma, as revisões de escopo oferecem uma ferramenta importante que pode fornecer um mapa da variedade de evidências disponíveis (127) enquanto revisões sistemáticas fornecem respostas mais objetivas quando se tem perguntas específicas a respeito de alguma temática (128).

#### 2. OBJETIVOS

Assim, o objetivo deste estudo será identificar através de diferentes metodologias de síntese de conhecimento: (I) se os irrigantes do canal radicular influenciam as propriedades mecânicas dos dentes tratados endodonticamente e quais propriedades podem ser afetadas, através de uma revisão de escopo; (II) mapear as evidências sobre o uso de solventes para dissolução / remoção de guta-percha durante os retratamentos endodônticos a partir de um revisão de escopo; e (III) avaliar os efeitos de irrigantes de canal radicular na resistência de união *push-out* de cimentos endodônticos usados para obturar dentes tratados endodônticos, por meio de uma revisão sistemática.

## 3. ARTIGO 1

## Title page

# Effect of root canal irrigants on the mechanical properties of endodontically treated teeth: a scoping review

Lara Dotto<sup>a</sup>, Rafael Sarkis Onofre<sup>a</sup>, Ataís Bacchi<sup>a</sup>, Gabriel Kalil Rocha Pereira<sup>a</sup>.

<sup>a</sup> MSciD Post-Graduate Program in Dentistry, School of Dentistry, Meridional Faculty - IMED, Passo Fundo, Rio Grande do Sul State, Brazil.

\*Corresponding author: D.D.S, M.S.D., Ph.D. Gabriel Kalil Rocha Pereira, Associate Professor, Meridional Faculty (IMED), MSciD Post-Graduate Program in Dentistry. R. Senador Pinheiro, 304, 99070-220, Passo Fundo, Rio Grande do Sul, Brazil. E-mail: <u>gabrielkrpereira@hotmail.com</u>

Artigo publicado no periódico Journal of Endodontics e formatado segundo suas normas.

### Effect of Root Canal Irrigants on the Mechanical Properties of Endodontically Treated Teeth: A Scoping Review

#### Abstract

**Introduction:** The aim of this study was to identify through a scoping review whether root canal irrigants influence the mechanical properties of endodontically treated teeth, and which properties could be affected. The protocol of this study, available online (https://osf.io/yc9nb/), followed the Joana Briggs Institute guidelines. Reporting was based on PRISMA Extension for Scoping Reviews.

**Methods:** We selected studies written in English that evaluated the effect of at least one irrigant on the mechanical properties of endodontically treated teeth. The search and study screening were performed in PubMed and Scopus databases by 2 independent researchers. A descriptive analysis was performed to consider the study design, the characteristics of the irrigants, and the properties tested.

**Results:** The initial Search yielded 608 citations, of which 66 were included. On the basis of the collected data, the most commonly used solutions were 17% EDTA, 2.5% or 5% sodium hypochlorite, and 2% chlorhexidine, and the most common tested properties were hardness and strength. Alterations in the modulus of elasticity, stress and strain concentration during preparation, and roughness were also assessed.

**Conclusions:** The majority of studies corroborated a negative effect of all solutions on the mechanical properties of endodontically treated teeth. Furthermore, increases in the concentration of the solution and in the time of exposure were found to intensify deleterious effects. However, disinfection of the canal is also a crucial factor in endodontic success. Thus, clinicians should consider these factors to mitigate the effects without interfering with antibacterial properties, customizing the choice of the solution to the case in hand.

**Clinical significance:** The unavoidable deleterious impact of irrigants on mechanical properties of endodontically treated teeth can be mitigated by reducing the concentration and time of exposure to the solutions, although they still had to guarantee root canal cleanness (antibacterial effects).

Keywords: dentistry; systematic reviews, reporting, PRISMA

#### INTRODUCTION

Adequate cleaning, shaping, and debridement of the root canal to eliminate bacteria, remove necrotic tissues, and any remainder of smear layer generated by mechanical preparation are among the clinical challenges faced on a daily basis during endodontic treatment<sup>1</sup>. Accordingly, the adequate action of any irrigant solution used in all of these considered factors can culminate in a predictability of success and longevity of the treatment. This is shown by clinical studies where the recurrence of infection is cited as a major reason for failure<sup>1,2</sup>.

There are a number of irrigant solutions available for endodontic treatment, and many others are being tested; however, none meet all the requirements needed to be considered an ideal irrigant<sup>2,3</sup>. For example, the main requirements include a broad antibacterial spectrum, the dissolution of remnants of both vital and necrotic pulp tissue, and avoidance of the formation of smear layer during mechanical preparation (or dissolution when it is formed)<sup>2</sup>. However, each solution has unique properties. For example, sodium hypochlorite (NaOCI) and chlorhexidine (CHX) exhibit a broad antibacterial spectrum<sup>1</sup>, but NaOCI is a potential irritant of periapical tissues<sup>1</sup>. Conversely, CHX does not dissolve the pulp tissue but is less cytotoxic to the periapical tissues than NaOCI<sup>4</sup>. Accordingly, it is sometimes necessary to use

the irrigant solution combinations or alternate with chelators to address some disadvantages<sup>1,5,6</sup>.

Irrigant solutions are also important because they could influence the mechanical properties of the dental structure<sup>7,8</sup> as well as assist in the cleaning of the root canal. Some studies have identified a relationship between mechanical defects in dental structures such as a reduction in the microhardness of root dentin or an increase in the incidence of vertical fracture with auxiliary chemical solutions<sup>8,9</sup>. Factors such as increased concentrations of irrigant solutions, high capacity to remove smear layer, and time of dentin exposure to solutions are being discussed as possible causes of these faults<sup>8,10–14</sup>. However, this issue is still controversial, and it is unclear in the literature which mechanical properties could be affected by irrigant solutions. Accordingly, scoping reviews offer an important tool that can provide a map of the range of available evidence<sup>15</sup>. Thus, the aim of this study was to identify through a scoping review whether root canal

irrigants influence the mechanical properties of endodontically treated teeth and which properties could be affected.

#### MATERIALS AND METHODS

The protocol of this study was based on the framework proposed by Peters et al<sup>15</sup> according to the Joana Briggs Institute and is available at the following link: (<u>https://osf.io/yc9nb/</u>). In addition, the reporting of this scoping review was based on PRISMA Extension for Scoping Reviews<sup>16</sup>.

#### Inclusion Criteria

We selected studies in dentistry that considered the effect of irrigant solutions on the mechanical properties of endodontically treated teeth. This included studies that evaluated the study design and the effect of at least one irrigant solution on dentin, regardless of origin (human or animal), but only studies written in English were included.

#### Search

The search was performed by using 2 databases (PubMed and Scopus) without date restrictions (last executed on May 30, 2019). The following search strategy was drafted on the basis of MeSH terms of PubMed and adapted with specific terms for Scopus.

- PubMed: "Tooth, Nonvital" [Mesh] OR "Tooth, Nonvital" OR "Nonvital Tooth" OR "Tooth, Devitalized" OR "Devitalized Tooth" OR "Tooth, Pulpless" OR "Pulpless Tooth" OR "Teeth, Pulpless" OR "Pulpless Teeth" OR "Teeth, Devitalized" OR "Devitalized Teeth" OR "Teeth, Nonvital" OR "Nonvital Teeth" OR "Teeth, Endodontically-Treated" OR "Endodontically-Treated Teeth" OR "Teeth, "Tooth, Endodontically Treated" OR Endodontically-Treated" OR "Endodontically-Treated Tooth" OR "Tooth, Endodontically Treated" OR "dentin\*" AND "Root Canal Irrigants" [Mesh] OR "Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCI" OR "CHX" OR "ethylenediamine tetraacetic acid" AND "fracture" OR "strength" OR "resistance" OR "fatigue" OR "mechanical properties" OR "flexural strength" OR "microhardness" OR "modulus of elasticity" NOT "bond"

- Scopus: "Tooth, Nonvital" OR "Nonvital Tooth" OR "Tooth, Devitalized" OR "Devitalized Tooth" OR "Tooth, Pulpless" OR "Pulpless Tooth" OR "Teeth, Pulpless" OR "Pulpless Teeth" OR "Teeth, Devitalized" OR "Devitalized Teeth" OR "Teeth, Nonvital" OR "Nonvital Teeth" OR "Teeth, Endodontically-Treated" OR "Endodontically-Treated Teeth" OR "Teeth, Endodontically Treated" OR "Tooth, Endodontically-Treated" OR "Endodontically-Treated Tooth" OR "Tooth, Endodontically Treated" OR "Endodontically-Treated Tooth" OR "Tooth, Endodontically Treated" AND "Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" AND "fracture" OR "strength" OR "resistance" OR "fatigue" OR "mechanical properties" OR "flexural strength" OR "microhardness" OR "modulus of elasticity" AND NOT bond AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (SUBJAREA, "DENT")).

#### Screening

Initially, the search was undertaken by using EndNote program (EndNote X9; Thomson Reuters, New York, NY). Two researchers (L.D., G.K.R.P.) independently identified articles by first analyzing titles and abstracts for relevance and presence of eligibility criteria. Retrieved records were classified as "include," "exclude," or "uncertain". The full-text articles of the included and uncertain records were selected for further eligibility screening by the same researchers (acting independently). Discrepancies in screening of titles/abstracts and full-text articles were resolved through discussion. In case of disagreement, the opinion of a third reviewer (R.S.O.) was obtained.

#### Charting the Results

We created an Excel (Microsoft Excel, Redmond, WA) spreadsheet to record data according to the consensus of the 3 reviewers after testing. Then, one of the reviewers (L.D.) extracted the data, and another (G.K.R.P.) checked it. Data included the following information: study design; irrigation solutions tested; concentration of the solution; exposure time; final rinse; teeth type (human or animal); teeth conditions (split, filled, restored, using a dowel and if so the type

of dowel); mechanical properties evaluated and the method used; and the main findings. In terms of identification of reviews (either systematic or not), the following data were collected: inclusion criteria, number of included articles, number of included articles grouped by mechanical test, main findings, level of evidence generated reported by authors, and conclusions.

#### Data Analysis

The synthesis focused on describing the irrigant solutions used, their characteristics, the properties tested, and whether solutions affected the mechanical properties of the teeth. A descriptive analysis was performed that considered the study design, the characteristics of the different irrigants, and the properties tested. Analysis was then presented in tables and graphs. Finally, we created a word cloud considering the substances tested by using the website <u>https://www.wordclouds.com/</u> to illustrate the prevalence of using each solution graphically.

#### RESULTS

#### Search Findings

Figure 1 presents the flow chart for the study selection. The search initially yielded 608 potentially relevant citations (Scopus: n=395; PubMed: n=213). After removal of duplicates (31) and irrelevant articles (493), 84 citations met the eligibility criteria based on title and abstract. These were obtained and full-text screened, resulting in 66 remaining studies being included in the analysis (qualitative synthesis).

#### **Prior Published Review**

Among the studies included in this scoping review, we found a systematic review<sup>8</sup> in which the authors explored the direct effect of NaOCI on the mechanical properties of root dentin. In general, considering only 9 studies published up to 2009, they concluded that there was strong evidence showing that NaOCI influences the mechanical properties of root dentin, and from a clinical perspective, it would be prudent to use a minimal concentration of NaOCI. However, discussion regarding which NaOCI concentration would be best advised was not possible (Supplemental Table S1).

#### Substances Assessed in Included

Studies Figure 2 summarizes the substances used in the included studies. The more a substance was used, the larger it appears in the word cloud. Accordingly, it can be noticed that the most commonly used solutions were 17% EDTA, 2.5% NaOCI, 5% NaOCI, saline as a control solution, and 2% CHX.

# Effects of Root Canal Irrigants on the Mechanical Properties of Endodontically Treated Teeth (Results from Experimental Studies)

There were 2 additional experimental type of studies (one in vitro<sup>17</sup> and one in silico<sup>1</sup>) included in the present review, and their results are presented according to the properties evaluated. Figure 3 presents a correlation of the number of studies related to each of the properties assessed and the substance that was most widely reported being used. We can observe that hardness was the property most evaluated, and 17% EDTA was the substance most used (considering especially hardness and strength properties).

#### Hardness (Micro and Nano)

It was observed in in vitro studies that the irrigating solution usually demonstrates a deleterious effect on both micro and nano hardness (Supplemental Table S2). From a total of 36 studies, 21 showed a deleterious effect, regardless of the solution, as follows: a mixture of a bisbiguanide antimicrobial agent (CHX), a polyaminocarboxylic acid calciumchelating agent (EDTA), and a surfactant (cetrimide-cetyl-trimethyl-ammoniumbromide), known EDTA: ethyleneglycol-bis[b-aminoethylether]-N,N,N0,N0as QMiX: tetraaceticacid (EGTA); EDTA plus Cetavlon (cationic agent with antiseptic properties) (EDTAC); ethylenediamine (EDA); EDTA-EDA mixture; cyclohexane-1,2-diaminetetraacetic acid (CDTA); hydroxyethylidene bisphosphonate (HEBP); citric acid (CA); peracetic acid (PA); maleic acid (MA); phytic acid (PhyA); phosphoric acid (PhA); NaOCI; sodium ascorbate (SA); 6% NaOCI with surface modifiers (Chlor-XTRA), chitosan; morinda citrifolia juice (MCJ); a mixture of doxycycline, citric acid, and a detergent (MTAD); 17% EDTA, cetrimide, and a specific surfactant (Smear Clear); cetrimide; tetracycline hydrochloride; hydrogen peroxide (HP); saline; deionized water and distilled water (DW) (Supplemental Table S2).

Another 14 studies showed a partially negative effect, with some solutions showing absence of effect, as follows: pomegranate; apple cider; grape vinegars; apple vinegar; EDTA; 17% EDTA solution with 0.84 g cetrimide (REDTA); EDTAC; acetic acid; MA; CA; glycolic acid (GA); NaOCI; Chlor-XTRA; sodium citrate; CHX; chlorhexidine with detergents (CHX-Plus); octenidine hydrochloride (OCT); chlorine dioxide (CIO2); chitosan; MCJ; MTAD; Smear Clear; HP; saline and DW (Supplemental Table S2). Only one study<sup>18</sup> demonstrated an absence of effect with the evaluated irrigants considered, as follows: EDTA; NaOCI; superoxidized water-Sterilox (Sx); and DW.

The most commonly used substance to evaluate this property was NaOCI (disregarding its concentration differences), with it not being used in only 5 studies<sup>9,19–22</sup>. Most commonly, it was found that the presence of the substance (no matter what concentration) had a deleterious effect on microhardness, but an increase in concentration had an increased effect. CHX

was considered in 9 studies, with 5 demonstrating absence of effect<sup>23–27</sup> and 4 demonstrating a negative effect<sup>28–31</sup>. All studies that tested acid solutions showed negative effects, irrespective of the acidic type (Supplemental Table S2); and only 2 studies considered vinegars, which, in general, demonstrated an absence of effect<sup>7,23</sup>.

Regarding EDTA solution and similar compositional chelating agents (EDTAC, REDTA, CDTA, GDTA, and EDA), only 5 of the studies reviewed did not evaluate them<sup>23,26,30,32,33</sup>. It is well-known that there can be a deleterious effect with its use, regardless of concentration and time.

Finally, with regard to the use of commercially available cleansers (MTAD, QMix, and Smear Clear), solutions that present a component with antiseptic/antibacterial properties, an acidic component, and a surfactant, 7 studies considered such solutions and demonstrated a negative influence with at least one of these solutions (Supplemental Table S2). Only one study<sup>34</sup> demonstrated no influence using MTAD, and another study<sup>35</sup> demonstrated no influence using Smear Clear. Other solutions were also explored sporadically (for example, HEBP, Sx,SA, ClO2, OCT, HP, and MCJ); however, because very little information exists, no conclusive performance could be exemplified herein.

## Strength Properties (Flexural Strength, Ultimate Tensile Strength, Vertical Root Fracture, or Fracture Resistance)

From 27 studies that considered strength properties, a large majority indicated harmful effects, where 5 demonstrated such effects for all considered solutions, as follows: EDTA; CA; NaOCI; alkalized or neutral NaOCI; saline; DW and deionized water<sup>36–40</sup>. Only 6 studies<sup>12,30,41–43,17</sup> demonstrated an absence of negative effect in any solution, as follows: EDTA; REDTA; lactic acid (LA); Pha; NaOCI; SA; CHX; QMix; MTAD; HP; saline; DW and deionized water, and 13 showed only partially harmful effects under specific solutions or protocols: EDTA; NaOCI and EDTA; CHX and EDTA; QMix and EDTA; grape seed extract (GSE) and EDTA; EDTA and cetrimide; CA, cetrimide, doxycycline hyclate, and polypropylene glycol; MA; HEBP; CHX; GSE; calcium hypochlorite (Ca(OCI)2); NaOCI; NaOCI with water; alkalized NaOCI; 2 mol/L NaOH with water; water; NaOCI and EDTA under 2 protocols; 1 mol/L NaOH; saline; DW and ultrapure water; and finally MTAD (Supplemental Table S3).

The most frequently used substance for this property was NaOCI (disregarding its concentration differences), which was not tested in 2 studies<sup>12,44</sup>, although they used NaOCI solution during root canal preparation. Among these studies, no statistical differences were observed when NaOCI was tested with EDTA or MTAD<sup>17</sup>, and they did not present deleterious effect on resistance to fracture in several studies (Supplemental Table S3). However, in other studies, the solution was found to alter the resistance to fracture, mainly when NaOCI concentration was increased and used under longer exposure periods (Supplemental Table S3). NaOCI has also been tested at higher pH<sup>14,38,45</sup> where the alkalized NaOCI solution deleteriously impacted the flexural strength of dentin.

#### Modulus of Elasticity

Those in vitro studies that evaluated the modulus of elasticity (Supplemental Table S4) indicated a completely heterogeneous performance. The most evaluated solution regarding this property was NaOCI (disregarding its concentration differences), where some studies corroborated a decrease in response to the use of NaOCI solutions and some discarded such effect (Supplemental Table S4). Only 3 studies considered the use of EDTA under different protocols<sup>13,46,47</sup>.

These studies used 17% EDTA; however, only one study<sup>13</sup> performed preparation and instrumentation of specimens that were exposed to the solution for 45 seconds, whereas the other studies used 2.5% NaOCI-associated EDTA using a 2-hour exposure protocol, which demonstrated a negative effect<sup>46</sup>. In one study<sup>47</sup>, no effect under 3 minutes of exposure was demonstrated. Two studies showed that 17% EDTA significantly reduces the modulus of elasticity<sup>13,46</sup>, and one study demonstrated that the solutions did not reduce the property evaluated, and there was no significant difference between the solutions in the group tested<sup>47</sup>.

#### **Stress and Strain Concentration**

Five studies considered stress and strain concentration in response to the effect of different irrigant solutions used during mechanical preparation (Supplemental Table S5). Four studies used in vitro setups and strain gauge devices, where the tooth was maintained intact or only decoronated, with the root canal accessed and the solution positioned during mechanical preparation with the device glued to the cervical external portion of the root<sup>48–51</sup>. In general, it appeared that NaOCI increased tooth surface strain concentration. Meanwhile, a finite element analysis (in silico approach) was used in one study<sup>52</sup>, and the findings also corroborated an increased stress and strain concentration in dentin with the use of the irrigant solutions.

#### Roughness

With regard to the studies that considered roughness (Supplemental Table S6), the irrigant solution demonstrated a potential roughening effect on dentin. The use of vinegars and acid solutions demonstrated a harmful effect in all cases, and the use of EDTA was almost universally harmful (absence of effect only in one study<sup>53</sup>). Data regarding NaOCI was very heterogeneous, where some studies suggested an absence of roughening effect, and some corroborated a deleterious effect (Supplemental Table S6).

#### DISCUSSION

This scoping review provides the first synthesis of information considering influence of various irrigant solutions on different mechanical properties of endodontically treated teeth. The importance of this scoping review lies in the extensive information on substances that can be used during the chemicalmechanical preparation of endodontic treatment. However, it is unclear whether these various substances could affect the mechanical properties of dental structures. Our results showed that concentrations and times of application significantly alter mechanical properties, and those increases in both variables lead to greater changes.

With regard to the studies included in our review, NaOCI was the most frequently used substance in tests (disregarding its concentration differences), because it is the longest established irrigant used by dentists<sup>54,55</sup>. This substance is recognized for its broad spectrum of antibacterial activity, large dissolution of vital and necrotic tissues, low cost, and easy availability<sup>2</sup>. However, such performance characteristics could result in a compromise of the dentin structures, as well as the already mentioned benefits. Accordingly, the systematic review that evaluated the direct effect of NaOCI (as an endodontic irrigant) on the mechanical properties of root dentin suggested strong evidence of NaOCI negatively altering the mechanical properties of root dentin and defended the use of the lowest possible concentrations. However, information concerning appropriate concentration levels was not available<sup>8</sup>. Those assumptions were corroborated when the data collected from all studies included in the present scoping review were considered.

The literature<sup>10,39,56</sup> demonstrated both concentration- and timedependent effects of hypochlorite on organic dentin components, whereby with only a 1% concentration for up to 10 minutes, the alterations were at a minimum. However, time of exposure in which the properties were tested in most cases did not correspond to the clinical scenario, because this factor in particular could vary depending on the operator's experience and different clinical situations. It would certainly be higher than 10 minutes, even though the main recommendation should be to reduce the exposure time to the minimum necessary for the case in hand<sup>23,33,34</sup>. On the basis of these observations, the data presented here greatly encourage the necessity for new studies to explore thematic efforts to define thresholds of time and concentration that guarantee root canal cleanliness without compromising the root dentin tissue mechanical properties.

With regard to the use of CHX, the mechanical properties of the dentin were not affected in one study only<sup>57</sup>. However, the majority of studies observed a deleterious effect (Supplemental Tables S1–S6). Despite that, the protocol of CHX application was very heterogeneous, sometimes as a single solution, sometimes associated with one or more other irrigants. Notwithstanding, the inherent substantivity of CHX must also be considered, because the substance could act over time. When laboratory tests were performed, there was a short period of action of irrigants; for instance, some studies left the solution in contact with the substrate for 1, 3, or 5 minutes (Supplemental Tables S1–S6). This exposure time does not represent what happens in a real clinical scenario. Thus, the clinical situation may lead to a greater effect on the mechanical properties of the teeth than those shown by these studies (Supplemental Tables S1–S6). Consequently, more studies are necessary to completely understand the effects of such solution.

Topographical/morphologic alterations are related to the presence of smear layer and opening of dentinal tubules<sup>22,24,58–60</sup>. Accordingly, chelating agents are decalcifying substances used to remove the smear layer<sup>2</sup>. This action is both necessary and important because it opens and exposes the dentinal tubules for penetration of irrigants and intracanal medicaments into the structure, and it improves the adhesion of the luting agent<sup>61–63</sup>. In general, regardless of whether specimens are instrumented, chelating agents have been demonstrated to be more likely to cause damage to the micro and nano hardness properties of the dental structure.

Regarding strength properties, specimens had a greater tendency to fracture when in contact with solutions in higher concentrations or for a longer exposure time because of greater removal of organic or inorganic matter from deeper layers, leading to a decrease in these properties. Until now, a chemical solution that shows perfect removal of smear layer and opening of dentinal tubules has not been available. Despite a discrete tendency in the literature to support the use of EDTA as the most adequate alternative, it has to be emphasized that the studies present completely heterogeneous data in this regard (Supplemental Table S3). However, its use for a short period seems to be less harmful to mechanical properties, especially strength. Therefore, when using EDTA at higher concentrations (15% or 17%), it should be used for short periods (up to 2 minutes) to try and minimize its impact<sup>11,41,44,57</sup>. Thus, if used after mechanical/chemical preparation as a final step to serve as a demineralizing agent, the benefits of this agent will be achieved without drastically influencing the mechanical properties of the teeth.

Beyond the effect of solutions on mechanical properties, the disinfection of the canal is a crucial factor for endodontic success<sup>1,2</sup>. Therefore, the extent to which it is possible to reduce the concentration and the time of exposure of the solution without affecting the antibacterial properties of substances should be taken into account, because the mechanical properties become irrelevant if no success is achieved in the endodontic treatment. This scoping review showed that the lowest NaOCI concentrations capable of altering the mechanical properties were 1% for microhardness, 0.5% for flexural strength, and 0.6% for elastic modulus.

However, previous studies have shown that 0.5% NaOCI for bacterial removal is effective only for the dentin surface layer, suggesting that to achieve greater effectiveness in removing bacteria, it is necessary to use NaOCI with other agents<sup>4</sup> or under higher concentration, especially in cases of pulp necrosis, where cleaning of the deepest layers of dentin is required. This aspect is different from a vital pulp treatment, where the number of pathogens is lower than in a necrotic tooth. Thus, the concentration of the solution that would be used in a necrotic tooth is traditionally higher than the concentration that would be used in vital pulp<sup>4</sup>; more studies should address these different scenarios of pulp vitality/presence of pathogens. Accordingly, 10 studies corroborate minimum effect of NaOCI on strength properties with concentrations of up to 2% (Supplemental Table S3). However, a decrease in time of exposure to a minimum should still be considered on the basis of the findings presented herein.

It is evident that the present scoping review presents some limitations. First, the included studies tested different mechanical properties and various substances. Moreover, different methods were also used; specimens were analyzed under different conditions (sectioned, whole, and filled) and different storage conditions until the moment of the test was considered. All these factors lead to heterogeneity, which limits exact comparison between studies. Second, because this was a scoping review, we did not conduct a risk of bias assessment of the included studies; this could be undertaken in the future during a full systematic review. Finally, our scoping review identified that future studies should focus on establishing which solution concentration and application time are required for viable and safe exposure, without compromising the mechanical properties of the teeth, but to guarantee adequate root canal cleanness.

#### CONCLUSION

Regardless of the considered irrigation solution, most existing cases corroborate the occurrence of some damage to the mechanical properties of endodontically treated teeth. Thus, the available literature seems to determine that factors such as concentration and exposure time should be considered to mitigate deleterious effects, without interfering with antibacterial properties. In addition, it is necessary to know the characteristics of each solution to decide which is the more suitable, ensuring the success of endodontic treatment and causing minimal mechanical damage to the case in hand.

#### REFERENCES

1. Fedorowicz Z, Nasser M, Sequeira P, et al. Irrigants for non-surgical root canal treatment in mature permanent teeth. Cochrane Database Syst Rev 2012:CD008948.

2. Zehnder M. Root canal irrigants. J Endod 2006;32:389–98.

3. Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, et al. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J 2018;51:901–11.

4. Gonçalves LS, Rodrigues RCV, Andrade Junior CV, et al. The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J Endod 2016;42:527–32.

5. Zehnder M, Schmidlin P, Sener B, Waltimo T. Chelation in root canal therapy reconsidered. J Endod 2005;31:817–20.

6. Wright PP, Kahler B, Walsh LJ. Alkaline sodium hypochlorite irrigant and its chemical interactions. Materials (Basel) 2017;10:1–8.

7. Cruz-Filho AM, Sousa-Neto MD, Savioli RN, et al. Effect of chelating solutions on the microhardness of root canal lumen dentin. J Endod 2011;37:358–62.

 8. Pascon FM, Kantovitz KR, Sacramento PA, et al. Effect of sodium hypochlorite on dentine mechanical properties: a review. J Dent 2009;37:903–8.
 9. Akcay I, Sen BH. The effect of surfactant addition to EDTA on microhardness of root dentin. J Endod 2012;38:704–7.

10. Zhang K, Kim YK, Cadenaro M, et al. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod 2010;36:105–9.

11. Uzunoglu E, Aktemur S, Uyanik MO, et al. Effect of

ethylenediaminetetraacetic acid on root fracture with respect to concentration at different time exposures. J Endod 2012;38:1110–3.

12. Uzunoglu E, Yilmaz Z, Erdogan O, G€orduysus M. Final irrigation regimens affect fracture resistance values of root-filled teeth. J Endod 2016;42:493–5.

13. Wang L, Zhao Y, Mei L, et al. Effect of application time of maleic acid on smear layer removal and mechanical properties of root canal dentin. Acta Odontol Scand 2017;75:59–66.

14. Souza EM, Quadros JDRP, Silva EJNL, et al. Volume and/or time of NaOCI influences the fracture strength of endodontically treated bovine teeth. Braz Dent J 2019;30:31–5.

15. Peters MDJ, Ma Q, Godfrey CM, et al. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc 2015;13:141–6.

16. Tricco AC, Lillie E, Zarin W, et al. Research and reporting methods PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467–73.

17. Al-kahtani AM, Al-fawaz H, Al-sarhan M, Al-Ali K. Fracture resistance of teeth obturated with RealSeal using two different chelating agents: an in vitro study. J Contemp Dent Pract 2010;11:1–6.

 Ghisi AC, Kopper P, Baldasso FER, et al. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness. Braz Dent J 2014;25:420–4. 19. Nikhil V, Jaiswal S, Bansal P, et al. Effect of phytic acid,

ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin. J Conserv Dent 2016;19:179–83.

20. Ballal NV, Mala K, Bhat KS. Evaluation of the effect of maleic acid and ethylenediaminetetraacetic acid on the microhardness and surface roughness of human root canal dentin. J Endod 2010;36:1385–8.

21. De-Deus G, Paciornik S, Mauricio MHP. Evaluation of the effect of EDTA, EDTAC and citric acid on the microhardness of root dentine. Int Endod J 2006;39:401–7.

22. Bello YD, Fracaro H, Paula A, et al. Glycolic acid as the final irrigant in endodontics: mechanical and cytotoxic effects. Mater Sci Eng C 2019;100:323–
9.

23. Akbulut MB, Guneser MB, Eldeniz AU. Effects of fruit vinegars on root dentin microhardness and roughness. J Conserv Dent 2019;22:97–101.
24. Akbulut MB, Terlemez A. Does the photon-induced photoacoustic streaming activation of irrigation solutions alter the dentin microhardness? Photobiomodul Photomed Laser Surg 2019;37:38–44.

25. Patil CR, Uppin V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: an in vitro study. Indian J Dent Res 2011;22:22–7.

26. Oliveira LD, Carvalho CAT, Nunes W, et al. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:125–8.

27. Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod 2004;30:792–5.

28. Tuncer AK, Tuncer S, Siso SH. Effect of QMix irrigant on the microhardness of root canal dentine. Aust Dent J 2015;60:163–8.

29. Das A, Kottoor J, Mathew J, et al. Dentine microhardness changes following conventional and alternate irrigation regimens: an in vitro study. J Conserv Dent 2014;17:546–9.

30. Marcelino APM, Bruniera JF, Rached-Junior FA, et al. Impact of chemical agents for surface treatments on microhardness and flexural strength of root dentin. Braz Oral Res 2014;28:1–6.

31. Aslantas EE, Buzoglu HD, Altundasar E, Serper A. Effect of EDTA, sodium hypochlorite, and chlorhexidine gluconate with or without surface modifiers on dentin microhardness. J Endod 2014;40:876–9.

32. Garcia AJA, Kuga MC, Palma-dibb RG, et al. Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. J Investig Clin Dent 2013;4:229–32.

33. Slutzky-goldberg I, Maree M, Liberman R, Heling I. Effect of sodium hypochlorite on dentin microhardness. J Endod 2004;30:2–4.

34. Kalluru RS, Kumar ND, Ahmed S, et al. Comparative evaluation of the effect of EDTA, EDTAC, NaOCI and MTAD on microhardness of human dentin: an invitro study. J Clin Diagnostic Res 2014;8:39–41.

35. Ulusoy €OIA, G€org€ul G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion. Aust Endod J 2013;39:66–72.

36. Khoroushi M, Tavakol F, Shirban F, Ziaei S. Influence of intracanal irrigants on coronal fracture resistance of endodontically treated and bleached teeth: an in vitro study. Contemp Clin Dent 2017;8:552–7.

37. Gu L, Huang X, Griffin B, et al. Primum non nocere: the effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater 2017;1:144–56.
38. Souza EM, Calixto AM, Nara C, et al. Similar influence of stabilized alkaline and neutral sodium hypochlorite solutions on the fracture resistance of root canal–treated bovine teeth. J Endod 2014;40:1600–3.

39. Wang TF, Feng XW, Gao YX, et al. Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin. J Huazhong Univ Sci Technolog Med Sci 2017;37:568–76.

40. Grigoratos D, Knowles J, Ng Y, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J 2001;34:113–9.

41. Bhandary S, Kakamari S, Srinivasan R, et al. A comparative evaluation of the effect of 8% and 17% ethylenediaminetetraacetic acid exposure for 1 min and 10 min on the fracture resistance of endodontically treated roots: an in vitro study. J Conserv Dent 2017;20:21–4.

42. Cullen JKT, Wealleans JA, Kirkpatrick TC, Yaccino JM. The effect of 8.25%sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus. J Endod 2015;41:920–4.

43. Ayad MF, Bahannan SA, Rosenstiel SF. Influence of irrigant, dowel type, and root-reinforcing material on fracture resistance of thin-walled endodontically treated teeth. J Prosthodont 2011;20:180–9.

44. Tiwari S, Nikhade P, Chandak M, et al. Impact of various irrigating agents on root fracture: an in vitro study. J Contemp Dent Pract 2016;17:659–62.
45. Jungbluth H, Marending M, De-deus G, et al. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin. J Endod 2011;37:693–6.

46. Machnick TK, Torabinejad M, Munoz CA, Shabahang S. Effect of MTAD on flexural strength and modulus of elasticity of dentin. J Endod 2003;29:747–50.
47. Marending M, Paque F, Fischer J, Zehnder M. Impact of irrigant sequence on mechanical properties of human root dentin. J Endod 2007;33:1325–8.

48. Sobhani OE, Gulabivala K, Knowles JC, Ng Y. The effect of irrigation time, root morphology and dentine thickness on tooth surface strain when using 5% sodium hypochlorite and 17% EDTA. Int Endod J 2010;43:190–9.

49. Rajasingham R, Ng Y, Knowles JC, Gulabivala K. The effect of sodium hypochlorite and ethylenediaminetetraacetic acid irrigation, individually and in alternation, on tooth surface strain. Int Endod J 2010;43:31–40.

50. Goldsmith M, Gulabivala K, Knowles JC. The effect of sodium hypochlorite irrigant concentration on tooth surface strain. J Endod 2002;28:575–9.

51. Sim TPC, Knowles JC, Ng Y-L, et al. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J 2001;34:120–32.

52. Belli S, Eraslan O, Eraslan O, et al. Effects of NaOCI, EDTA and MTAD when applied to dentine on stress distribution in post-restored roots with flared canals. Int Endod J 2014;47:1123–32.

53. Eldeniz AU, Erdemir A, Belli S. Effect of EDTA and citric acid solutions on the microhardness and the roughness of human root canal dentin. J Endod 2005;31:107–10.

54. Kanisavaran ZM, Iran Y. Sodium hypochlorite in endodontics: an update review. Int Dent J 2008;58:329–41.

55. Zehnder M, Kosicki D, Luder H, et al. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:756–62.

56. Marending M, Luder HU, Brunner TJ, et al. Effect of sodium hypochlorite on human root dentine: mechanical, chemical and structural evaluation. Int Endod J 2007;40:786–93.

57. Khoroushi M, Ziaei S, Shirban F, Tavakol F. Effect of intracanal irrigants on coronal fracture resistance of endodontically treated teeth undergoing combined bleaching protocol: an in vitro study. J Dent 2018;15:266–74.

58. Aranda-garcia AJ, Kuga MC, Chavez-Andrade G, et al. Effect of final irrigation protocols on microhardness and erosion of root effect of final irrigation protocols on microhardness and erosion of root canal dentin. Microsc Res Tech 2013;76:1079–83.

59. Baldasso FER, Roleto L, Silva V, et al. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Braz Oral Res 2017;31:1–8.

60. Saghiri MA, Delvarani A, Mehrvarzfar P, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e29–34.

61. Deari S, Mohn D, Zehnder M. Dentine decalcification and smear layer removal by different ethylenediaminetetraacetic acid and 1-hydroxyethane-1, 1-diphosphonic acid species. Int Endod J 2019;52:237–43.

62. Ballal NV, Ferrer-luque CM, Sona M, et al. Evaluation of final irrigation regimens with maleic acid for smear layer removal and wettability of root canal sealer. Acta Odontol Scand 2017;76:1–5.

63. Turk T, Kaval ME, Sxen BH. Evaluation of the smear layer removal and erosive capacity of EDTA, boric acid, citric acid and desy clean solutions: an in vitro study. BMC Oral Health 2015;15:1–5.

### **Table Captions**

 Table 1 – Description of data obtained on included review studies.

**Table 2** – Description of data obtained on included in vitro studies that

 evaluated micro and nanohardness properties.

**Table 3** – Description of data obtained on included in vitro studies that evaluated strength properties (flexural strength, ultimate tensile strength – UTS, vertical root fracture, or fracture resistance – compression at 45°).

**Table 4** – Description of data obtained on included in vitro studies that

 evaluated modulus of elasticity properties.

**Table 5** – Description of data obtained on included studies (in vitro and in silico) that evaluated stress and strain concentration during mechanical preparation using the irrigant solutions.

**Table 6** – Description of data obtained on included in vitro studies thatevaluated roughness properties.

### **Figure Captions**

Figure 1 – Flowchart of study selection.

Figure 2 – Word cloud representing the substances used. The more a

substance was used, the bigger it appears in the word cloud.

**Figure 3** – Relation between properties tested and the most substance used. CHX, chlorhexidine.

## **Table Captions**

 Table 1. Description of data obtained on included review studies.

| Author                            | Type<br>of<br>study      | Data base<br>considered                                                                      | Eligibility<br>criteria                                                                                                                      | Characteristic of<br>included studies                                                                                | Main result                                                                                                                                                                   | Reporte<br>d quality<br>of<br>evidence | Conclusions (Main findings)                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|--------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pascon<br><i>et al.</i> ,<br>2009 | System<br>atic<br>review | Cochrane<br>Library,<br>Embase,<br>PubMed and<br>Web of<br>Science<br>(from 1984<br>to 2008) | Papers that<br>studied the<br>direct effect of<br>NaOCI (as<br>endodontic<br>irrigant) on the<br>mechanical<br>properties of<br>root dentine | 9 (5 considering<br>flexural strength;<br>4 microhardness;<br>1 tensile strength;<br>and 2 modulus of<br>elasticity) | Decrease on flexural<br>and tensile strength,<br>modulus of elasticity,<br>and microhardness<br>when NaOCI was used<br>as an irrigant solution<br>during canal<br>preparation | Strong                                 | Authors suggest that NaOCI adversely alters the mechanical properties of root dentine, when used as an endodontic irrigant. From a clinical point of view, they emphasize that it would be prudent to select a suitable NaOCI concentration, which had minimal effects on the mechanical properties of the tooth while achieving the desired debridement effect. However, this optimum NaOCI concentration has not yet been determined. |
| Legends                           | : Sodium I               | hypochlorite (Na                                                                             | IOCI)                                                                                                                                        |                                                                                                                      |                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Table 2.** Description of data obtained on included *in vitro* studies that evaluated micro and nanohardness properties.

| Author                           | Irrigate solutions<br>tested                                                                                                                            | Moment of<br>usage of the<br>solution                                                                        | Concentration                                       | Time         | Volume | Wash-out | Type of<br>tooth                                          | Tooth<br>condition<br>during<br>analysis                                             | Storag<br>e<br>conditi<br>ons | Standard<br>moisture<br>conditio<br>n | Conclusions (Main findings)                                                                                                                                                                            |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|--------|----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Akbulut et<br>al., 2019          | DW; pomegranate;<br>apple cider; grape<br>vinegars; NaOCl; CHX;<br>OCT                                                                                  | Not prepared,<br>the root dentin<br>was exposed to<br>the irrigant<br>solution                               | 2.5% NaOCI, 2%<br>CHX.                              | 15 or 30 min | NR     | NR       | Human,<br>mandibul<br>ar incisor<br>teeth                 | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin | DW up<br>to 3<br>months       | NR                                    | There was no statistically significant<br>difference on microhardness<br>between irrigant groups. The<br>increase on time of exposure (15 to<br>30min) with all solutions lead to a<br>harmful effect. |
| Akbulut and<br>Terlemez,<br>2019 | NaOCI; CHX; EDTA                                                                                                                                        | During<br>preparation:<br>DW between<br>files; After<br>(final) it was<br>used the<br>evaluated<br>solutions | 2.5% NaOCl; 17%<br>EDTA; and 2%<br>CHX.             | 1 min        | 6mL    | DW       | Human,<br>single<br>rooted<br>mandibul<br>ar<br>premolars | Sectioned:<br>longitudinally<br>sliced                                               | DW up<br>to 3<br>months       | Yes                                   | Among the irrigant groups, NaOCI<br>and CHX did not alter<br>microhardness. EDTA statistically<br>decreased such outcome.                                                                              |
| Akcay <i>et al.,</i><br>2013     | 7.5% EDTA + 2.5%<br>NaOCI; 7.5% EGTA +<br>2.5% NaOCI; 7.5%<br>CDTA + 2.5% NaOCI;<br>7.5% EDTA + 2.5%<br>EDA; EDTA-EDA<br>mixture + EDTA-EDA<br>mixture. | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                          | 7.5% EDTA, 2.5%<br>NaOCI,<br>7.5%CDTA,<br>7.5%EGTA. | 1 min        | 50mL   | DW       | Human,<br>canine<br>teeth                                 | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin | 0.01%<br>thymol<br>solution   | NR                                    | All tested solutions reduced the<br>microhardness. EDTA-EDA single<br>mixture has led to least change on<br>the microhardness.                                                                         |
| Akcay and<br>Sen, 2012           | 5% EDTA; 5% EDTA +<br>0.25% cetrimide; 5%<br>EDTA + 0.50%<br>cetrimide; 0.25%                                                                           | Not prepared,<br>the root dentin<br>was only                                                                 | 5% EDTA; 0.25%<br>cetrimide; 0.50%<br>cetrimide.    | 1 min        | 50mL   | DW       | Human,<br>canine<br>teeth                                 | Sectioned:<br>longitudinally<br>sliced, polished                                     | 0.1%<br>thymol<br>solution    | Yes                                   | All tested solutions reduced the<br>microhardness. The use of<br>surfactants higher than 0.25% in                                                                                                      |

|                                                  | cetrimide; 0.50% cetrimide.                                            | exposed to the<br>irrigant solution                                                                                    |                                                             |                                                                                                                                                                 |           |                                                                                           |                                               | and embedded<br>in acrylic resin                                                                                                                                                                  |                            |    | concentration is questionable for<br>clinical conditions.                                                                                                           |
|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aranda-<br>Garcia <i>et</i><br><i>al.</i> , 2013 | DW; EDTA; MTAD;<br>Smear-Clear; QMiX.                                  | During<br>preparation:<br>DW; After<br>(final) it was<br>used the<br>evaluated<br>solutions +<br>2.5% or 1.3%<br>NaOCI | 17% EDTA.                                                   | EDTA (3min);<br>MTAD (5min);<br>Smear-<br>Clear(1min);<br>QMiX (2min)                                                                                           | Unclear   | 2.5%<br>NaOCI for<br>all, except<br>to BioPure<br>MTAD<br>where 1.3%<br>NaOCI was<br>used | Human,<br>upper<br>canines                    | Sectioned:<br>coronal<br>removal for<br>preparation;<br>longitudinally<br>sliced,<br>polished,<br>embedded in<br>acrylic resin,<br>tested,<br>submitted to<br>the solution<br>and tested<br>again | 0.1%<br>thymol<br>solution | NR | All protocols reduced equally the microhardness.                                                                                                                    |
| Ari <i>et al.,</i><br>2004                       | DW; NaOCI; HP; EDTA;<br>CHX                                            | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                    | 5.25% NaOCl;<br>2.5% NaOCl; 3%<br>HP; 17% EDTA;<br>0.2% CHX | 15min                                                                                                                                                           | 5mL       | DW                                                                                        | Human,<br>mandibul<br>ar<br>anterior<br>teeth | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                                                                              | Buffere<br>d saline        | NR | Only CHX did not significantly<br>decreased microhardness.                                                                                                          |
| Aslantas <i>et</i><br><i>al.,</i> 2014           | EDTA; REDTA; CHX;<br>CHX-Plus; NaOCl;<br>Chlor-XTRA                    | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                    | 17% EDTA; 2%<br>CHX; 6% NaOCI.                              | 5min                                                                                                                                                            | 5mL       | Not<br>executed                                                                           | Human,<br>third<br>molars                     | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                                                                              | 0.5%<br>chloram<br>ine-T   | NR | EDTA and NaOCI significantly<br>decreased microhardness,<br>regardless of the presence of<br>surfactant. EDTA was most harmful<br>than NaOCI and CHX.               |
| Baldasso et<br>al., 2017                         | DW; QMix + NaOCl;<br>EDTA + NaOCl; CA +<br>NaOCl; PA + NaOCl;<br>NaOCl | During<br>preparation:<br>DW between<br>files; After<br>(final) it was<br>used the<br>evaluated<br>solutions           | 17% EDTA; 10%<br>CA; 1% PA; 2.5%<br>NaOCI.                  | Qmix for 2 min +<br>NaOCI for 5 min;<br>EDTA for 5 min +<br>NaOCI for 5 min +<br>NaOCI for 5 min +<br>NaOCI for 5 min +<br>NaOCI for 5 min;<br>NaOCI for 5 min; | 2 ml/ min | DW                                                                                        | Human,<br>mandibul<br>ar<br>incisors          | Sectioned:<br>Coronal and<br>apice removal,<br>submitted to<br>the preparation<br>and solutions<br>and tested.                                                                                    | DW                         | NR | All solutions decreased<br>microhardness. QMiX and 17%<br>EDTA reduced at a greater depth<br>when compared to 10% CA and 1%<br>PA.                                  |
| Ballal <i>et al.,</i><br>2015                    | Saline; ClO <sub>2</sub> ; EDTA;<br>MA; NaOCl                          | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                    | 13.8% ClO <sub>2</sub> ; 17%<br>EDTA; 7% MA;<br>2.5% NaOCl  | 1min                                                                                                                                                            | 5mL       | DW                                                                                        | Human,<br>maxillary<br>central<br>incisors    | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                                                                              | 0.2%<br>sodium<br>azide    | NR | 13.8% CIO <sub>2</sub> and 2.5% NaOCI<br>reduced microhardness more than<br>17% EDTA. There was no signifi<br>cant difference between other<br>experimental groups. |
| Ballal <i>et al.,</i><br>2010a                   | Saline; EDTA; MA                                                       | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                    | 17% EDTA; 7%<br>MA                                          | 1min                                                                                                                                                            | 1mL       | NR                                                                                        | Human,<br>maxillary<br>central<br>incisors    | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                                                                              | 0.2%<br>sodium<br>azide    | NR | Maleic acid reduced the<br>microhardness of root dentin similar<br>to EDTA.                                                                                         |
| Bello <i>et al.,</i><br>2019                     | DW; EDTA; CA; GA                                                       | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                    | 17% EDTA; 10%<br>CA; 5% GA; 10%<br>GA; 17% GA               | 1min                                                                                                                                                            | 50mL      | DW                                                                                        | Human,<br>mandibul<br>ar teeth                | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                                                                              | Saline                     | NR | CA 10% and GA 17% significantly reduced microhardness.                                                                                                              |

|                                        |                                                       |                                                                                                                    | -                                                                         |                                                                                          | 1             |                 |                                                                | 1                                                                                                                                            |                                      | -  |                                                                                                                                                                                                                                                         |
|----------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------|-----------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cruz-Filho<br>et al., 2002             | EGTA                                                  | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                | 1% EGTA; 3%<br>EGTA; 5% EGTA.                                             | 5min                                                                                     | 50uL          | NR              | Human,<br>maxillary<br>incisors                                | Sectioned:<br>horizontally<br>and<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>exposed to the<br>solutions and<br>tested | NR                                   | NR | All EGTA solutions significantly<br>reduced dentin microhardness in a<br>concentration-dependent relation<br>(1%<3%<5%).                                                                                                                                |
| Cruz-Filho<br>et al., 2011             | EDTA; CA; MA; AA;<br>apple vinegar; sodium<br>citrate | During<br>preparation: 1%<br>NaOCI between<br>files; After<br>(final) it was<br>used the<br>evaluated<br>solutions | 15%EDTA; 10%<br>CA; 5% MA; 5%<br>AA; 10% sodium<br>citrate                | 5min                                                                                     | 50uL          | 1% NaOCI        | Human,<br>single<br>rooted<br>maxillary<br>central<br>incisors | Sectioned:<br>coronal<br>removal for<br>preparation;<br>longitudinally<br>sliced,<br>submitted to<br>the solutions<br>and tested             | 0.1%<br>thymol<br>solution           | NR | Except for sodium citrate, all tested chelating solutions reduced microhardness.                                                                                                                                                                        |
| Das <i>et al.,</i><br>2014             | DW; NaOCI +EDTA +<br>CHX; MCJ + EDTA;<br>NaOCI + QMix | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                | 5% NaOCI+ 17%<br>EDTA + 2% CHX;<br>6% MCJ+17%<br>EDTA; 5% NaOCI<br>+ QMix | 5min (each)                                                                              | 5mL<br>(each) | DW              | Human,<br>maxillary<br>central<br>incisors                     | Sectioned:<br>longitudinally<br>sliced, polished<br>and embedded<br>in acrylic resin                                                         | 0.1%<br>Thymol                       | NR | All irrigating solutions, except for<br>DW, decreased dentin<br>microhardness.                                                                                                                                                                          |
| De-Deus <i>et</i><br><i>al.,</i> 2006  | EDTA; EDTAC; CA                                       | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                | EDTA 17%;<br>EDTAC 17%;<br>CA10%.                                         | 1;3;5min                                                                                 | 50uL          | DW              | Human,<br>canine<br>teeth                                      | Sectioned:<br>horizontally<br>sliced into 4<br>mm thick,<br>polished,<br>exposed to the<br>solutions and<br>tested                           | 10%<br>neutral<br>formalin           | NR | Microhardness decreased with<br>increasing time of application of<br>chelating solutions. There were no<br>significant differences between initial<br>microhardness for the three groups<br>as well as after 1 min of application<br>of the substances. |
| Dineshkum<br>ar <i>et al.,</i><br>2012 | DW; NaOCI + EDTA;<br>NaOCI + MTAD; NaOCI<br>+ HEBP    | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                | 1.3%NaOCI+17%<br>EDTA; 1.3%<br>NaOCI+ MTAD;<br>1.3% NaOCI+18%<br>HEBP.    | 20min NaOCI +<br>1min EDTA;<br>20min NaOCI +<br>5min MTAD;<br>20min NaOCI +<br>5min HEBP | NR            | NR              | Human,<br>single-<br>rooted<br>mandibul<br>ar<br>premolars     | Sectioned:<br>longitudinally<br>sliced,<br>polished,<br>embebeed in<br>acrylic resin,<br>exposed to the<br>solutions and<br>tested           | NR                                   | NR | All solutions decreased microhardness.                                                                                                                                                                                                                  |
| Eldeniz <i>et</i><br><i>al.,</i> 2005  | DW; CA + NaOCI;<br>EDTA + NaOCI                       | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                | 19% CA + 5.25%<br>NaOCl; 17%<br>EDTA + 5.25%<br>NaOCl                     | 150s (each<br>solution)                                                                  | NR            | Not<br>reported | Human,<br>mandibul<br>ar<br>anterior<br>teeth                  | Sectioned:<br>longitudinally<br>sliced,<br>polished,<br>embebeed in<br>acrylic resin,<br>exposed to the<br>solutions and<br>tested           | Phosph<br>ate<br>buffere<br>d saline | NR | Significant differences were<br>observed in microhardness among<br>the test groups, citric acid group<br>being the least harmful.                                                                                                                       |

| Garcia et<br><i>al.,</i> 2013         | NaOCI; Chlor-XTRA                                                                  | During<br>preparation:<br>DW between<br>files; After<br>(final) it was<br>used the<br>evaluated<br>solutions      | 2.5% NaOCI solution and gel                                                                                          | 15min                                                                                                        | NR                                                                                                 | DW                           | Human,<br>upper<br>canines                               | Sectioned:<br>coronal<br>removal for<br>preparation;<br>longitudinally<br>sliced,<br>submitted to<br>the solutions<br>and tested<br>considering two<br>regions apical<br>and cervical        | 0.1%<br>thymol                                                                                | NR | All substances reduced equally dentin microhardness.                                                                                                                                                                                                            |
|---------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ghisi <i>et al.,</i><br>2014          | DW; 2% NaOCI; 5%<br>NaOCI; Sx; 17% EDTA                                            | During<br>preparation                                                                                             | 2% NaOCI; 5%<br>NaOCI; Sx + 17%<br>EDTA; 2% NaOCI<br>+ 17% EDTA; 5%<br>NaOCI + 17%<br>EDTA; Sx+17%<br>EDTA; 17% EDTA | 30min; when<br>using EDTA it<br>was added 5 min<br>extra                                                     | 10mL<br>(2mL for<br>each<br>instrument<br>); when<br>using<br>EDTA it<br>was<br>added<br>2mL extra | NaOCI or<br>Sx               | Bovine<br>incisors                                       | Sectioned:<br>coronal<br>removal for<br>preparation;<br>longitudinally<br>sliced and<br>tested                                                                                               | DW                                                                                            | NR | None solution presented statistical difference from DW.                                                                                                                                                                                                         |
| Kalluru <i>et</i><br><i>al.,</i> 2014 | EDTA; EDTAC; NaOCI;<br>MTAD                                                        | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                               | 17% EDTA; 17%<br>EDTAC; 3%<br>NaOCI.                                                                                 | 0; 2 and 5 min                                                                                               | NR                                                                                                 | Unclear                      | Human,<br>single<br>rooted<br>mandibul<br>ar<br>premolar | Sectioned:<br>coronal<br>removal,<br>exposed to the<br>solutions and<br>tested                                                                                                               | 10%<br>neutral<br>buffere<br>d<br>formalin<br>for two<br>weeks;<br>than<br>DW<br>until<br>use | NR | EDTA, EDTAC drastically reduced<br>the microhardness with the increase<br>on time of exposure (2 min already<br>statistically signifcant reduction).<br>NaOCI and MTAD did not altered<br>the microhardness significantly.                                      |
| Kara<br>Tuncer et<br>al., 2015        | EDTA + NaOCI; EDTA<br>+ CHX; QMix; MA.                                             | During<br>preparation:<br>2.5% NAOCI;<br>After (final) it<br>was used the<br>evaluated<br>solutions               | 17% EDTA +<br>2.5% NaOCl; 17%<br>EDTA + 2% CHX.                                                                      | 1min (each)                                                                                                  | 5mL<br>(each)                                                                                      | Deionized<br>water and<br>DW | Human,<br>maxillary<br>canine<br>teeth                   | Sectioned:<br>coronal<br>removal for<br>preparation;<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>polished and<br>tested at<br>apical, middle<br>and cervical<br>regions | 0.1%<br>thymol<br>solution                                                                    | NR | Maleic acid decreased the<br>microhardness significantly more<br>than QMix, 17% EDTA + 2% CHX<br>and 17% EDTA + 2.5% NaOCI.<br>QMix and 17% EDTA + 2.5% CHX<br>caused the same reduction in the<br>microhardness of root canal dentine<br>in all three regions. |
| Marcelino <i>et</i><br>al., 2014      | Deionized water;<br>NaOCl; NaOCl + SA;<br>SA; CHX; PhA; PhA +<br>CHX; PhA + NaOCl. | During<br>preparation:<br>2.5% NaOCI<br>between files<br>followed by<br>17% EDTA for<br>5 min and<br>washed for 1 | 5.25% NaOCI;<br>5.25% NaOCI +<br>10% SA; 10%SA;<br>2%CHXgel;<br>37%PhA;<br>37%PhA+2%CHX<br>;                         | 10 min for<br>Deionized water;<br>and 10% SA; 5<br>min for 5.25%<br>NaOCI; and 2%<br>CHX; 15seg for<br>37%PA | 10 mL for<br>Deionized<br>water;<br>5.25%<br>NaOCI;<br>and 10%<br>SA                               | Deionized<br>water           | Human,<br>canines                                        | Mixed: whole<br>(only root canal<br>access) during<br>preparation<br>and exposure<br>to the<br>solutions; but<br>before testing                                                              | 0.1%<br>thymol<br>solution                                                                    | NR | The use of deionized water only<br>lead to the highest microhardness.<br>All other solutions impacted<br>deleteriously and did not differ<br>among each other.                                                                                                  |

|                               |                              | min with DW.<br>After that it was<br>used the<br>evaluated<br>solutions             | 37%PhA+5.25%N<br>aOCl.                                |       |      |                    |                                                                                          | each root was<br>shaped into<br>bars                                                                                                                                                                                          |                     |    |                                                                                                                                                                    |
|-------------------------------|------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-------|------|--------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nikhil <i>et al.,</i><br>2016 | PhyA; EDTA; chitosan.        | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 1% PhyA;<br>17%EDTA; 0.2%<br>chitosan                 | 3min  | 50uL | DW                 | Human,<br>canine<br>teeth                                                                | Sectioned:<br>coronal<br>removal;<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>polished and<br>tested prior and<br>after exposure<br>to the solution                                                      | NR                  | NR | All tested chelators reduced<br>microhardness. 17% EDTA reduced<br>more significantly than 1% phytic<br>acid and 0.2% chitosan (where the<br>latter were similar). |
| Oliveira et<br>al., 2007      | Saline; NaOCI; CHX.          | Final (5 mL of saline solution).                                                    | 1%NaOCl;<br>2%CHX.                                    | 15min | 1mL  | NR                 | Human,<br>single<br>rooted<br>premolars                                                  | Sectioned:<br>coronal<br>removal for<br>preparation;<br>horizontally<br>sliced in three<br>thirds (cervical,<br>midle, and<br>apical),<br>embedded in<br>acrylic resin,<br>polished,<br>exposed to<br>solutions and<br>tested | Saline              | NR | 2% chlorhexidine and 1%NaOCI<br>solutions significantly reduced the<br>microhardness.                                                                              |
| Patil and<br>Uppin, 2011      | DW; NaOCI; HP; EDTA;<br>CHX. | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 5%NaOCI;<br>2.5%NaOCI; 3%<br>HP; 17%EDTA;<br>0.2%CHX. | 15min | 5mL  | Distilled<br>water | Human,<br>intact<br>permane<br>nt<br>maxillary<br>and<br>mandibul<br>ar incisor<br>teeth | Sectioned:<br>longitudinally<br>sliced,<br>polished,<br>embedded in<br>acrylic resin,<br>exposed to the<br>solutions and<br>tested                                                                                            | Buffere<br>d saline | NR | CHX did not harm microhardness.<br>NaOCI shown the most deleterious<br>impact, regardless of concentration.<br>HP and EDTA show intermediary<br>effect.            |

| Pimenta <i>et</i><br><i>al.,</i> 2012 | DW; EDTA; CA;<br>chitosan.        | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                               | 15% EDTA; 10%<br>CA; 0.2%<br>chitosan.                                                               | 5min                                                                                                                                                       | 50uL          | 1% NaOCI                                                                                                                     | Human,<br>maxillary<br>central<br>incisors                         | Sectioned:<br>coronal<br>removal for<br>preparation;<br>horizontally<br>sliced and<br>divided in 4<br>quadrants,<br>each one was<br>embedded in<br>acrylic resin,<br>polished,<br>exposed to<br>solutions and<br>tested | 0.1%<br>thymol                             | NR | All solutions tested reduced the microhardness in a way that was statistically similar to each other.                                                                                     |
|---------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saghiri <i>et</i><br><i>al.,</i> 2009 | NaOCI; EDTA; MTAD;<br>CHX; Saline | During<br>preparation,<br>saline solution<br>(0.9% NaCl).<br>After that (final)<br>the evaluated<br>solution      | 2.6% NaOCI; 17%<br>EDTA +<br>2.6%NaOCI;<br>MTAD clinical<br>Protocol (1.3%<br>NaOCI +MTAD);<br>2%CHX | 5min 2.6%<br>NaOCI; 17%<br>EDTA +<br>2.6%NaOCI for 1<br>or 5 min each;<br>MTAD clinical<br>Protocol (20 min<br>1.3% NaOCI +<br>5 min MTAD);<br>2min 2% CHX | NR            | DW                                                                                                                           | Human,<br>maxillary<br>and<br>mandibul<br>ar<br>premolar<br>teeth. | Sectioned:<br>horizontally<br>sliced with<br>4mm thickness                                                                                                                                                              | 0.5%<br>chloram<br>in T up<br>to 1<br>week | NR | At a depth of 100 μm, all solutions<br>except 2% CHX and saline solutions<br>decreased microhardness<br>significantly. At a 500 μm depth,<br>only NaOCI and MTAD considerably<br>reduced. |
| Saha <i>et al.,</i><br>2017           | NaOCI; EDTA;<br>chitosan; MCJ     | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                               | 3% NaOCI; 17%<br>EDTA; 0.2%<br>chitosan; 6% MCJ                                                      | 15min                                                                                                                                                      | NR            | DW                                                                                                                           | Human,<br>premolars                                                | Sectioned:<br>coronal<br>removal;<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>polished and<br>tested prior and<br>after exposure<br>to the solution                                                | 0.1%<br>thymol                             | NR | A 6% MCJ and 3% NaOCI showed<br>negligible effect on the<br>microhardness.                                                                                                                |
| Saleh and<br>Ettman,<br>1999          | Saline; HP; NaOCl;<br>EDTA.       | During<br>preparation:<br>Saline between<br>files; After<br>(final) it was<br>used the<br>evaluated<br>solutions. | 3% HP + 5%<br>NaOCl;<br>17%EDTA.                                                                     | 60seg                                                                                                                                                      | 1mL<br>(each) | Only the<br>EDTA-<br>irrigated<br>canals<br>were rinsed<br>thoroughly<br>with<br>copious<br>amounts of<br>purified<br>water. | Human,<br>intact<br>maxillary<br>incisor<br>teeth                  | Sectioned:<br>coronal<br>removal for<br>preparation;<br>horizontally<br>sliced in three<br>thirds (cervical,<br>midle, and<br>apical),<br>embedded in<br>acrylic resin,<br>polished,<br>exposed to                      | Phosph<br>ate<br>buffere<br>d saline       | NR | Both H <sub>2</sub> O <sub>2</sub> /NaOCI and EDTA<br>irrigating solutions significantly<br>reduced the microhardness.                                                                    |

|                                      |                                                            |                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                  |      |    |                                                                     | solutions and tested                                                                                                                                                                                        |                                                               |    |                                                                                                                                                                                                                                         |
|--------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|----|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sayin <i>et al.,</i><br>2007         | NaOCI; EDTA; EDTAC;<br>EGTA; tetracycline<br>hydrochloride | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 2.5% NaOCI; 17%<br>EDTA; 15%<br>EDTAC; 17%<br>EGTA; 1%<br>tetracycline<br>hydrochloride;<br>17% EDTA +<br>NaOCI; 15%<br>EDTAC + NaOCI;<br>17% EGTA +<br>NaOCI; 1%<br>tetracycline<br>hydrochloride +<br>NaOCI. | 5min                                                                                                                                             | 10mL | DW | Human,<br>maxillary<br>incisor<br>and<br>mandibul<br>ar<br>premolar | Sectioned:<br>coronal<br>removal;<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>polished and<br>tested prior and<br>after exposure<br>to the solution                                    | DW up<br>to 2<br>months                                       | NR | All treatment regimens except<br>distilled water significantly<br>decreased the microhardness of the<br>root canal dentin.                                                                                                              |
| Slutzky-<br>Goldberg et<br>al., 2004 | Saline; NaOCI                                              | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 2.5% or 6%<br>NaOCI.                                                                                                                                                                                           | 5;10;20min<br>(changed every<br>minute)                                                                                                          | NR   | NR | Young,<br>bovine,<br>lower<br>central<br>incisors.                  | Sectioned:<br>exposure of the<br>root canal,<br>preparation<br>using the<br>testing<br>solutions<br>between files;<br>After that<br>longitudinally<br>sliced;<br>embedded in<br>acrylic resin<br>and tested | Saline                                                        | NR | There was a difference in dentin<br>microhardness between treated<br>samples and controls in all groups<br>tested, at the different depths<br>considered (500, 1000 and 1500µm)<br>depicting a time-dependent relation<br>(5<10<20min). |
| Taneja <i>et</i><br><i>al.,</i> 2014 | DW; NaOCI; EDTA; PA;<br>QMix                               | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 5% NaOCI+DW;<br>5% NaOCI+17%<br>EDTA; 5% NaOCI<br>+2.25% PA; 5%<br>NaOCI +QMix.                                                                                                                                | 5min (each)                                                                                                                                      | NR   | NR | Human,<br>single<br>rooted<br>premolars                             | Sectioned:<br>horizontally<br>sliced and<br>divided in 4<br>quadrants,<br>each one was<br>embedded in<br>acrylic resin,<br>polished,<br>exposed to<br>solutions and<br>tested                               | Formali<br>n for 1<br>week;<br>then<br>saline<br>until<br>use | NR | Irrigation with NaOCI + DW and<br>NaOCI + QMix were less harmfull<br>than others. NaOCI + PA was the<br>most harmfull. NaOCI + EDTA<br>presented intermediary<br>performance.                                                           |
| Tartari et<br>al., 2013              | Saline; NaOCl; EDTA;<br>CA; HEBP                           | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution | 5% NaOCI + 18%<br>HEBP; 2.5%<br>NaOCI; 2.5%<br>DAOCI; 2.5%<br>DTA + 2.5%<br>NaOCI; 2.5%<br>NaOCI; 2.5%<br>NaOCI + 10% CA<br>+ 2.5% NaOCI;<br>2.5% NaOCI + 9%                                                   | Mixture 5%<br>NaOCI and 18%<br>HEBP (30 min);<br>2.5% NaOCI (30<br>min); 2.5%<br>NaOCI (30 min)<br>+ 17% EDTA (3<br>min); 2.5%<br>NaOCI (30 min) | 40mL | DW | Human,<br>single-<br>rooted<br>teeth                                | Sectioned:<br>coronal and<br>apical removal;<br>longitudinally<br>sliced and<br>divided in thirds<br>(cervical,<br>middle and<br>apical), after                                                             | 0.1%<br>thymol                                                | NR | All tested irrigation regimens<br>significantly reduced the<br>microhardness.                                                                                                                                                           |

|                               |                                                   |                                                                                                                           | HEBP + 2.5%<br>NaOCI                                                                                                              | + 10% CA (3<br>min); 2.5%                                                                                                                                                                                                                         |                 |                                                                                                                                        |                                         | embedded in<br>acrylic resin,                                                                                                                                                                                                             |                                         |    |                                                                                                                                                                                           |
|-------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                   |                                                                                                                           | NaUCI                                                                                                                             | NaOCI (30 min)<br>+ 9% HEBP (5<br>min); 2.5%<br>NaOCI (30 min)<br>+ 17% EDTA (3<br>min) + 2.5%                                                                                                                                                    |                 |                                                                                                                                        |                                         | exposed to the<br>solutions and<br>tested again                                                                                                                                                                                           |                                         |    |                                                                                                                                                                                           |
|                               |                                                   |                                                                                                                           |                                                                                                                                   | NaOCI (3 min);<br>2.5% NaOCI (30<br>min) + 10% CA<br>(3 min) + 2.5%<br>NaOCI (3 min);<br>2.5% NaOCI (30<br>min) + 9% HEBP<br>(5 min) + 2.5%                                                                                                       |                 |                                                                                                                                        |                                         |                                                                                                                                                                                                                                           |                                         |    |                                                                                                                                                                                           |
| Ulusoy and<br>Görgül,<br>2013 | Saline; EDTA; NaOCI;<br>MA; MTAD; Smear-<br>Clear | During<br>preparation:<br>saline solution<br>between files;<br>After (final) it<br>was used the<br>evaluated<br>solutions | 17% EDTA +<br>2.5% NaOCl; 7%<br>MA + 2.5%<br>NaOCl; 1.3%<br>NaOCl+ BioPure<br>MTAD; Smear-<br>Clear + 2.5%<br>NaOCl; 5%<br>NaOCl. | NaOCI (3 min).<br>17% EDTA (5<br>min) + 2.5%<br>NaOCI (5 min);<br>7% maleic acid(5<br>min) + 2.5%<br>NaOCI (5 min);<br>1.3% NaOCI (20<br>min) + BioPure<br>MTAD(5 min);<br>Smear Clear (5<br>min) + 2.5%<br>NaOCI (5 min);<br>5% NaOCI<br>(5min); | 1mL<br>(each)   | Group<br>1.3%<br>NaOCI+<br>BioPure<br>MTAD:<br>finally<br>flushed with<br>3 mL<br>distilled<br>water after<br>irrigant<br>application. | Human,<br>single<br>rooted<br>teeth.    | Sectioned:<br>coronal<br>removal for<br>preparation;<br>horizontally<br>sliced and<br>longitudinally<br>divided in 4<br>quadrants,<br>each one was<br>embedded in<br>acrylic resin,<br>polished,<br>exposed to<br>solutions and<br>tested | DW                                      | NR | EDTA, maleic acid and MTAD<br>showed a significant reduction in<br>microhardness. Smear Clear,<br>NaOCI and saline did not.                                                               |
| Wang <i>et al.,</i><br>2017a  | Saline; MA; NaOCl;<br>EDTA                        | During<br>preparation:<br>2.5% NaOCI<br>between files;<br>after that it was<br>used the<br>evaluated<br>solutions         | 2.5% NaOCI;<br>7%MA +2.5%<br>NaOCI; 17%EDTA<br>+2.5% NaOCI                                                                        | 7%MA for 30s or<br>45s or 1 min or 3<br>min + 1 min<br>(2.5% NaOCI);<br>45 seg<br>(17%EDTA) +1<br>min (2.5%<br>NaOCI); 1min<br>2.5% NaOCI only                                                                                                    | 5mL<br>(each)   | Distilled<br>water                                                                                                                     | Human,<br>single<br>rooted<br>premolars | Sectioned:<br>coronal<br>removal;<br>longitudinally<br>sliced,<br>embedded in<br>acrylic resin,<br>polished and<br>tested prior and<br>after exposure<br>to the solution                                                                  | 0.2%<br>sodium<br>azide<br>until<br>use | NR | All of the protocols reduced the<br>micro and nanohardness after<br>irrigation compared with the pre-<br>treatment values. MA solutions were<br>more aggressive, specially after<br>1min. |
| Zaparolli et<br>al., 2012     | DW; NaOCI; EDTA.                                  | Not prepared,<br>the root dentin<br>was only<br>exposed to the<br>irrigant solution                                       | 1% NaOCI; 17%<br>EDTA; 1% NaOCI<br>+ 17% EDTA                                                                                     | 10min                                                                                                                                                                                                                                             | 0.5mL<br>(each) | DW                                                                                                                                     | Human,<br>mandibul<br>ar molars         | Roots shaped<br>into blocks<br>considering the<br>coronal<br>substrate                                                                                                                                                                    | Saline                                  | NR | All irrigating solutions, except for<br>DW reduced microhardness<br>col-bis[b-aminoethylether]-N.N.N0.N0-                                                                                 |

Legends: Sodium hypochlorite (NaOCI); chlorine dioxide (CIO2); Ethylenediamine tetraacetic acid (EDTA); EDTA + 0.84 g cetyltrimethylammonium bromide (REDTA); ethyleneglycol-bis/b-aminoethylether]-N,N,N0,N0tetraaceticacid (EGTA); trans1,2diaminocyclohexane NNN',N'tetraaceticacid (CDTA); Ethylenediamine (EDA); EDTA plus Cetavlon (EDTAC); hydroxyethylidene bisphosphonate (HEBP); Hydrogen peroxide (HP); Citra acid (CA); Maleic acid (MA); Peracetic acid (PA); Phosphoric acid (PhA); phytic acid (PhA); glycolic acid (GA); acetic acid (AA); Chlorhexidine gluconate (CHX); Chlorhexidine gluconate with surface modifier by Vista Dental (CHX Plus); 6% NaOCI with surface modifiers by Vista Dental (Chlor-Xtra); octenidine-hydrochloride (OCT); rot canal cleanser developed by SybronEndo (Smear Clear); Solution with antimicrobial activity used for the smear layer removal in final irrigation manufactured by Dentistry (QMix); Antibacterial root canal cleanser manufactured by Dentsply (MTAD); super-oxidized water - 400 ppm Sterilox (Sx); sodium ascorbate (SA); Morinda Citrifolia Juice (MCJ); Distilled Water (DW); Not Reported (NR).

Table 3. Description of data obtained on included in vitro studies that evaluated strength properties (flexural strength, ultimate tensile strength –

UTS, vertical root fracture, or fracture resistance – compression at 45°).

| Author                                   | Irrigate<br>solutions<br>tested       | Moment of<br>usage of the<br>solution                     | Concentration                                                                              | Time                                                                                 | Volume                           | Wash-out | Type of<br>tooth                           | Tooth<br>condition<br>during<br>analysis        | Storage<br>conditi<br>on  | Stand<br>ard<br>moist<br>ure<br>condit<br>ion | Filling                                                                                | Restoratio<br>n                                                                               | Propri<br>ety<br>consid<br>ered  | Conclusions<br>(Main<br>findings)                                                                                                                                               |
|------------------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------|----------|--------------------------------------------|-------------------------------------------------|---------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Al-<br>Kahtani<br><i>et al.,</i><br>2010 | EDTA + NaOCI;<br>MTAD + NaOCI         | Final (Irrigation<br>during<br>preparation with<br>NaOCI) | 17% EDTA; 5.25%<br>NaOCI                                                                   | Not reported                                                                         | 10 mL<br>(each)                  | NaOCL    | Human,<br>single<br>canal teeth            | Sectioned<br>(only<br>coronal<br>removal)       | Saline +<br>0.2%<br>CHX   | NR                                            | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>RealSe<br>al                      | NR                                                                                            | Vertical<br>root<br>fractur<br>e | No statistical<br>difference<br>among<br>conditions.                                                                                                                            |
| Ayad <i>et</i><br><i>al.,</i> 2011       | HP; NaOCI; HP<br>+ NaOCI;<br>EDTA; LA | During<br>preparation                                     | 5% HP; 5% NaOCI; 15%<br>EDTA; 10% and 20% LA                                               | Not reported                                                                         | 3 mL at<br>each file<br>change   | NR       | Human,<br>maxillary<br>central<br>incisors | Sectioned<br>(only<br>coronal<br>removal)       | DW with<br>0.1%<br>thymol | NR                                            | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>Ketac-<br>Endo<br>Aplicap<br>root | Post +<br>resin<br>cement<br>(Panavia<br>21) + resin<br>composite<br>core +<br>metal<br>crown | Fractur<br>e<br>resista<br>nce   | The only<br>difference was<br>observed with<br>the use of 10%<br>and 20% LA<br>and 15%<br>EDTA, which<br>significantly<br>increased<br>fracture<br>resistance.                  |
| Ayranci<br><i>et al.,</i><br>2018        | NaOCI; EDTA                           | Final (Irrigation<br>during<br>preparation with<br>NaOCI) | 5% NaOCI; 15%EDTA                                                                          | 120seg<br>(NaOCI);<br>EDTA<br>(agitated for<br>40 s)                                 | 2mL<br>(NaOCI);<br>1mL<br>(EDTA) | DW       | Human,<br>maxillary<br>anterior<br>teeth   | Sectioned<br>(coronal<br>and apical<br>removal) | DW                        | NR                                            | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>Endo<br>Plus<br>sealer            | NR                                                                                            | Vertical<br>root<br>fractur<br>e | The different<br>canal irrigation<br>techniques<br>altered<br>resistance to<br>fracture.                                                                                        |
| Bhandar<br>y et al.,<br>2017             | DW; EDTA +<br>NaOCI                   | Final (Irrigation<br>during<br>preparation with<br>NaOCI) | 17% EDTA + 1% NaOCl;<br>8% EDTA + 1% NaOCl;<br>17% EDTA + 1% NaOCl;<br>8% EDTA + 1% NaOCl. | 1 min NaOCI;<br>10min for<br>DW; 17%<br>and 8%<br>EDTA varied<br>from 1 to 10<br>min | 10 mL<br>(each)                  | NR       | Human,<br>single<br>rooted<br>teeth        | Sectioned<br>(only<br>coronal<br>removal)       | Saline                    | NR                                            | Single<br>cone<br>techniq<br>ue with<br>AH Plus<br>sealer                              | Coltosol F<br>(sealing)                                                                       | Vertical<br>root<br>fractur<br>e | No deleterious<br>impact on<br>resistance to<br>fracture.<br>Recommended<br>protocol: EDTA<br>higher<br>concentration<br>with shorter<br>exposure, or<br>lower<br>concentration |

|                                      |                                                                   |                                                                                                                                                                           |                                                 |                                                 |      |                                                                                                            |                                                                                                                     |                                                                                                             |                                                               |    |                       |                   |                                                                              | at a longer exposure time.                                                                                                                                                                         |
|--------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----|-----------------------|-------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cecchin<br><i>et al.,</i><br>2015    | DW; NaOCI +<br>EDTA; CHX +<br>EDTA; Qmix +<br>EDTA; GSE +<br>EDTA | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                                                                       | 2.5% NaOCI; 2% CHX;<br>6.5% GSE                 | 40min                                           | 2mL  | Rinsed<br>with DW,<br>immersed<br>in 17%<br>EDTA for 3<br>min;<br>rerinsed<br>with DW                      | Human,<br>molars for<br>flexural<br>strength,<br>single<br>rooted<br>teeth for<br>UTS                               | Sectioned<br>(roots were<br>shaped into<br>bars for<br>flexural<br>strength<br>and<br>hourglass<br>for UTS) | Frozen<br>for up to<br>3<br>months                            | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h; UTS                                            | The use of<br>GSE and CHX<br>does not<br>interfere in the<br>mechanical<br>properties of<br>dentine.<br>Furthermore,<br>NaOCI and<br>Qmix harm<br>dentine<br>mechanical<br>properties.             |
| Cecchin<br>et al.,<br>2017           | NaOCl;<br>Ca(OCl) <sub>2</sub> ; GSE                              | Two scenarios:<br>root dentin bars<br>and hourglass<br>was only exposed<br>to the solution; or<br>as a final solution<br>after teeth<br>preparation (DW<br>between files) | 6% NaOCl; 6%<br>Ca(OCl) <sub>2</sub> ; 6.5% GSE | 30min                                           | 2mL  | Rinsed<br>with DW,<br>immersed<br>in 17%<br>EDTA for 3<br>min and<br>thoroughly<br>rinsed with<br>DW again | Human,<br>molars for<br>flexural<br>strength,<br>single<br>rooted<br>teeth for<br>UTS and<br>fracture<br>resistance | Sectioned<br>(roots were<br>shaped into<br>bars,<br>hourglass,<br>or only<br>decoronate<br>d)               | Frozen<br>for up to<br>3<br>months                            | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h; UTS<br>and<br>Vertical<br>root<br>fractur<br>e | Different than<br>NaOCI, GSE<br>and Ca(OCI)2<br>are promising<br>irrigation<br>solutions that<br>do not<br>negatively<br>affect the in<br>vitro dentin<br>mechanical<br>properties.                |
| Cullen <i>et</i><br><i>al.,</i> 2015 | Saline; NaOCl                                                     | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                                                                       | 0.5; 2; 4.125; 6.0; and<br>8.25% NaOCl          | 60min<br>(changed<br>every 6min)                | 2mL  | NR                                                                                                         | Human,<br>permanent<br>mandibular<br>molars                                                                         | Sectioned<br>(roots were<br>shaped into<br>bars)                                                            | 0.5%<br>chlorami<br>ne-T                                      | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h                                                 | Only a trend<br>toward<br>decreasing<br>flexural<br>strength with<br>increasing<br>NaOCI<br>concentration.                                                                                         |
| Gu <i>et al.,</i><br>2017            | Deionized<br>water; NaOCl                                         | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                                                                       | 2%; 4%; 6%; 8% NaOCl                            | Up to 240<br>min<br>(refreshed<br>every 10 min) | 20mL | Deionized<br>water                                                                                         | Human,<br>third<br>molars                                                                                           | Sectioned<br>(roots were<br>shaped into<br>bars)                                                            | Saline +<br>0.02 %<br>sodium<br>azide for<br>up to 1<br>month | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h                                                 | All<br>experimental<br>groups had<br>decreased<br>flexural<br>strength;<br>Factors 'time of<br>exposure 'and<br>'concentration<br>of the solution'<br>directly affect<br>the flexural<br>strength. |
| Grigorat<br>os et<br>al.,2001        | Saline; NaOCl                                                     | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                                                                       | 3 and 5% NaOCI                                  | 2h (changed<br>every 15min)                     | 50mL | DW                                                                                                         | Human,<br>unclear<br>which kind                                                                                     | Sectioned<br>(roots were<br>shaped into<br>bars)                                                            | 4%<br>formal-<br>saline                                       | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h                                                 | NaOCI<br>solutions<br>reduced the<br>flexural<br>strength of<br>dentine.                                                                                                                           |

| Jungblut<br>h <i>et al.,</i><br>2011             | Saline;<br>1mol/L NaOH;<br>NaOCI with<br>water;<br>alkalized<br>NaOCI;<br>2 mol/L NaOH<br>with water. | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution | 10% NaOCI with water;<br>10% NaOCI with 2mol/L<br>NaOH                                                                           | 30min                                                                       | 5mL                                                    | Ultrapure<br>water | Human,<br>maxillary<br>third<br>molars | Sectioned<br>(roots were<br>shaped into<br>bars) | 0.2%<br>thymol<br>solution<br>for up to<br>1 year | Yes | Not<br>applica<br>ble                                               | Not<br>applicable  | Flexura<br>I<br>strengt<br>h     | The alkalized<br>NaOCI solution<br>deleteriously<br>impacted<br>flexural<br>strenght of<br>dentin. Other<br>solutions were<br>similar to<br>saline.         |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|--------------------|----------------------------------------|--------------------------------------------------|---------------------------------------------------|-----|---------------------------------------------------------------------|--------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Khorous<br>hi <i>et al.,</i><br>2017             | Saline; NaOCl;<br>CA; EDTA;<br>NaOCl+DW+C<br>A                                                        | During<br>preparation                                                               | 2.5% NaOCI; 10% CA;<br>17% EDTA                                                                                                  | 1-3 minutes<br>(each)                                                       | 5mL<br>(each)                                          | NR                 | Human,<br>premolars                    | Whole (only<br>root canal<br>access)             | 0.1%<br>thymol<br>solution                        | NR  | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>AH26<br>sealer | Composite<br>resin | Fractur<br>e<br>Resista<br>nce   | The irrigation<br>protocols used<br>during<br>endodontic<br>treatment<br>decreased the<br>coronal fracture<br>resistance of<br>teeth.                       |
| Khorous<br>hi <i>et al.,</i><br>2018             | NaOCI; CHX;<br>NaOCI+CHX;<br>NaOCI + EDTA;<br>NaOCI+EDTA+<br>CHX                                      | During<br>preparation                                                               | 2.5% NaOCI; and 2%<br>CHX always for 1<br>minute; 17% EDTA<br>always for 3 minutes;                                              | 1-3 minutes<br>(each)                                                       | 5mL<br>(each)                                          | NR                 | Human,<br>premolars                    | Whole (only<br>root canal<br>access)             | 0.1%<br>thymol<br>solution                        | NR  | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>AH26<br>sealer | Composite<br>resin | Fractur<br>e<br>Resista<br>nce   | The use of<br>CHX shown the<br>higher fracture<br>resistance,<br>followed by<br>NaOCL + CHX;<br>other solutions<br>shown the most<br>deleterious<br>impact. |
| Lantigua<br>Domíngu<br>ez <i>et al.,</i><br>2018 | Saline; NaOCl;<br>HEBP; EDTA;<br>CHX.                                                                 | During<br>preparation                                                               | 2.5% NaOCI + 17%<br>EDTA; 2% CHX + 17%<br>EDTA; mixture 5%<br>NaOCI + 18% HEBP.                                                  | 25min total<br>for all (22 min<br>1st solution +<br>3 min 2nd<br>solution)  | 12mL<br>(each)                                         | DW                 | Human,<br>premolars                    | Sectioned<br>(only<br>coronal<br>removal)        | Saline<br>solution<br>for up to<br>30 days        | NR  | Not<br>reporte<br>d                                                 | Not<br>reported    | Vertical<br>root<br>fractur<br>e | The combined<br>solution of 5%<br>NaOCI and<br>18% HEBP<br>decreased root<br>fracture<br>resistance.                                                        |
| Machnic<br>k <i>et al.,</i><br>2003              | Saline; NaOCI;<br>EDTA; MTAD                                                                          | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution | 0.66% 1.31% 2.63% and<br>5.25% NaOCI; 17%<br>EDTA; MTAD (2h) or<br>MTAD clinical protocol<br>(20 min 1.3% NaOCI +5<br>min MTAD). | 2h (changed<br>every 15<br>min); except<br>for MTAD<br>clinical<br>protocol | 30mL,<br>except<br>for<br>MTAD<br>clinical<br>protocol | Deionized<br>water | Human,<br>molars                       | Sectioned<br>(roots were<br>shaped into<br>bars) | 0.1%<br>chlorami<br>ne T                          | NR  | Not<br>applica<br>ble                                               | Not<br>applicable  | Flexura<br>I<br>Strengt<br>h     | A reduction in<br>flexural<br>strength was<br>observed only<br>at 2-h MTAD<br>and EDTA<br>groups.                                                           |
| Mai et<br>al., 2010                              | Water; NaOCI +<br>EDTA under<br>two protocols                                                         | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution | 5.25% NaOCI + 17%<br>EDTA.                                                                                                       | 10 or 60min<br>NaOCl +<br>2min EDTA                                         | NR                                                     | Deionized<br>water | Human,<br>third<br>molars              | Sectioned<br>(roots were<br>shaped into<br>bars) | NR                                                | NR  | Not<br>applica<br>ble                                               | Not<br>applicable  | Flexura<br>I<br>strengt<br>h     | Only under<br>longer<br>exposure<br>periods NaOCI<br>solution<br>potentiates<br>EDTA effects<br>and lead to<br>decrease on<br>flexural<br>strength.         |

| Marcelin<br>o <i>et al.,</i><br>2014 | Deionized<br>water; NaOCl;<br>NaOCl+SA; SA;<br>CHX; PA;<br>PA+CHX;<br>PA+NaOCl.                                | Final (During<br>preparation root<br>canals were<br>irrigated with<br>NaOCI between<br>each file followed<br>by 17% EDTA). | 5.25% NaOCI; 5.25%<br>NaOCI + 10% SA; 10%<br>SA; 2%CHX; 37%PA;<br>37%PA+2%CHX;<br>37%PA+5.25%NaOCI.               | 10 min for<br>Deionized<br>water; and<br>10% SA; 5<br>min for<br>5.25%<br>NaOCI; and<br>2% CHX;<br>15seg for<br>37%PA | 10 mL<br>for<br>Deionize<br>d water;<br>5.25%<br>NaOCl;<br>and 10%<br>SA | DW                 | Human,<br>canines                      | Mixed. Root<br>canal<br>access<br>during<br>preparation<br>and<br>exposure to<br>solutions;<br>shaped into<br>bars for<br>testing | 0.1%<br>thymol<br>solution                        | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h     | Flexural<br>strength was<br>not affected by<br>the chemical<br>agents.                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----|-----------------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Marendi<br>ng et al.,<br>2007a       | Ultrapure<br>water; NaOCI                                                                                      | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                        | 1; 5; and 9% NaOCI.                                                                                               | 1h                                                                                                                    | 5mL                                                                      | Ultrapure<br>water | Human,<br>maxillary<br>third<br>molars | Sectioned<br>(roots were<br>shaped into<br>bars)                                                                                  | 0.1%<br>thymol<br>solution<br>for up to<br>1 year | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h     | NaOCI caused<br>a<br>concentration-<br>dependent<br>reduction of<br>flexural<br>strength<br>(except to 1%).              |
| Marendi<br>ng et al.,<br>2007b       | DW; NaOCI;<br>EDTA; NaOCI +<br>EDTA (two<br>protocols)                                                         | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                        | 2.5% NaOCI; 17% EDTA                                                                                              | 30 min total<br>(21 min at<br>the first<br>solution<br>followed by 3<br>min in each<br>of the<br>following)           | 5mL<br>(each)                                                            | Distilled<br>water | Human,<br>maxillary<br>third<br>molars | Sectioned<br>(roots were<br>shaped into<br>bars)                                                                                  | 0.2%<br>thymol<br>solution<br>for up to<br>1 year | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h     | All protocols<br>involving the<br>use of NaOCI<br>deleteriously<br>impacted the<br>flexural<br>strength.                 |
| Sim <i>et</i><br><i>al.,</i> 2001    | Saline; NaOCl                                                                                                  | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution                                        | Saline; 0.5; and 5.25%<br>NaOCl                                                                                   | 2h (changed<br>every 10 min)                                                                                          | 200mL                                                                    | Water              | Human,<br>unclear<br>which kind        | Sectioned<br>(roots were<br>shaped into<br>bars)                                                                                  | 4%<br>formal-<br>saline                           | NR | Not<br>applica<br>ble | Not<br>applicable | Flexura<br>I<br>strengt<br>h     | 5.25% NaOCI<br>significantly<br>reduces the<br>flexural<br>strength.                                                     |
| Souza <i>et</i><br><i>al.,</i> 2014  | Distilled water;<br>NaOCI;<br>alkalized or<br>neutral NaOCI                                                    | During<br>preparation                                                                                                      | Neutral NaOCI ( pH of<br>7.2); alkalized NaOCI<br>(ph 12.8)                                                       | 26min                                                                                                                 | 30mL                                                                     | Distilled<br>water | Bovine,<br>anterior<br>incisors.       | Sectioned<br>(only<br>coronal<br>removal)                                                                                         | Saline                                            | NR | NR                    | NR                | Fractur<br>e<br>resista<br>nce   | Both testing<br>solutions lead<br>to a decrease<br>on fracture<br>strength.                                              |
| Souza et<br>al., 2019                | Alkalized<br>NaOCl                                                                                             | During<br>preparation                                                                                                      | 5.25% alkalized NaOCI                                                                                             | 11.5 min or<br>19min                                                                                                  | 15 mL or<br>30mL for<br>11.5min<br>or 19min                              | Distilled<br>water | Bovine,<br>anterior<br>incisors.       | Sectioned<br>(coronal<br>and apical<br>removal)                                                                                   | Saline                                            | NR | NR                    | NR                | Fractur<br>e<br>resista<br>nce   | Raising the<br>volume and/or<br>time of<br>alkalized<br>NaOCI solution<br>reduces the<br>fracture<br>resistance.         |
| Tiwari <i>et</i><br><i>al.,</i> 2016 | Saline; EDTA;<br>EDTA +<br>cetrimide; CA<br>+cetrimide+<br>doxycycline<br>hyclate +<br>polypropylene<br>glycol | Final (2% NaOCl<br>was used during<br>preparation)                                                                         | 10%; 15% or 17%<br>EDTA; 0.2% or 0.75%<br>cetrimide; 10.5% CA; 1%<br>doxycycline hyclate;<br>polypropylene glycol | NR                                                                                                                    | 10mL                                                                     | NR                 | Human,<br>maxillary<br>premolars.      | Sectioned<br>(only<br>coronal<br>removal)                                                                                         | Saline                                            | NR | NR                    | NR                | Vertical<br>root<br>fractur<br>e | 10% EDTA<br>provided the<br>highest fracture<br>resistance<br>compared with<br>other irrigants,<br>been<br>statistically |

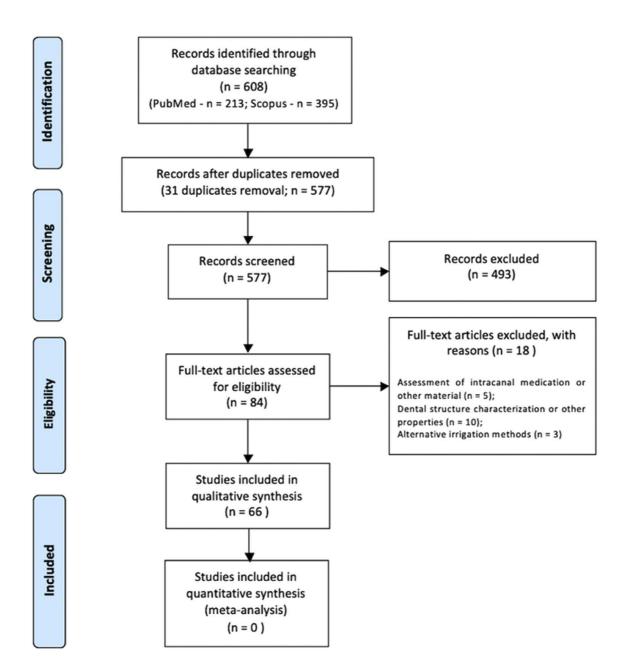
|                                        |                                             |                                                                                               |                                                                                           |                                                                      |                |                                 |                                         |                                                  |                                                              |    |                                                                        |                         |                                  | similar to saline.                                                                                                          |
|----------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|---------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------------------|----|------------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Uzunogl<br>u <i>et al.,</i><br>2012    | Distilled water;<br>NaOCI; EDTA             | Final (During<br>preparation,<br>between each file,<br>2 mL of 1%<br>NaOCI was used).         | 17% EDTA +1% NaOCI;<br>5% EDTA+1% NaOCI                                                   | 1min or 10<br>min (17% or<br>5% EDTA) +<br>1min (1%<br>NaOCI)        | 10mL<br>(each) | Saline                          | Human,<br>mandibular<br>incisors        | Sectioned<br>(only<br>coronal<br>removal)        | 0.5%<br>chlorami<br>ne-T                                     | NR | Single<br>cone<br>techniq<br>ue and<br>AH 26<br>sealer                 | NR                      | Vertical<br>root<br>fractur<br>e | Only 17%<br>EDTA for 10<br>min decreased<br>the fracture<br>resistance in<br>comparison to<br>DW                            |
| Uzunogl<br>u <i>et al.,</i><br>2016    | Saline; EDTA;<br>REDTA; CHX;<br>Qmix; MTAD. | Final (During<br>preparation using<br>1 mL 2.5% NaOCI<br>between each<br>file).               | 17% EDTA; 2% CHX.                                                                         | 1 minute<br>except for<br>MTAD that<br>was applied<br>for 5 minutes  | 5mL<br>(each)  | Distilled<br>water              | Human,<br>mandibular<br>incisor         | Sectioned<br>(only<br>coronal<br>removal)        | 0.2%<br>sodium<br>azide                                      | NR | Single<br>cone<br>techniq<br>ue and<br>AH 26<br>sealer                 | Coltosol F<br>(sealing) | Vertical<br>root<br>fractur<br>e | No statistical<br>difference<br>among<br>conditions in<br>comparison to<br>saline.                                          |
| Wang <i>et</i><br><i>al.,</i><br>2017a | Saline; MA;<br>NaOCI; EDTA.                 | Final (Between<br>each file, the root<br>canals were<br>irrigated with 2mL<br>of 2.5% NaOCI). | 7%MA +2.5% NaOCI;<br>17%EDTA +2.5%<br>NaOCI.                                              | MA for 30s<br>up to 3 min;<br>EDTA for 45<br>seg; NaOCI<br>for 1 min | 5mL<br>(each)  | Distilled<br>water              | Human,<br>single<br>rooted<br>premolars | Sectioned<br>(only<br>coronal<br>removal)        | 0.2%<br>sodium<br>azide                                      | NR | Lateral<br>conden<br>sation<br>techniq<br>ue with<br>AH Plus<br>sealer | NR                      | Vertical<br>root<br>fractur<br>e | Only the use of<br>7% MA for 3<br>min impacted<br>deleteriously<br>the fracture<br>resistance.                              |
| Wang <i>et</i><br><i>al.,</i><br>2017b | DW; NaOCI                                   | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution           | 1%; 5% and 10% NaOCI                                                                      | Up to 60min                                                          | 2mL            | NR                              | Human,<br>premolars                     | Sectioned<br>(roots were<br>shaped into<br>bars) | 0.5%<br>thymol                                               | NR | Not<br>applica<br>ble                                                  | Not<br>applicable       | Flexura<br>I<br>strengt<br>h     | All NaOCI<br>concentrations<br>decrease the<br>flexural<br>strength,<br>especially<br>longer<br>exposure<br>periods.        |
| Zhang <i>et</i><br><i>al.,</i> 2010    | NaOCI; EDTA                                 | Not prepared, the<br>root dentin was<br>only exposed to<br>the irrigant<br>solution           | 5.25%NaOCl +<br>17%EDTA/2min; 1.3%<br>NaOCl +<br>17%EDTA/2min; only<br>17% EDTA for 2 min | Up to 240<br>min                                                     | 5mL            | Deionized<br>water (3<br>times) | Human,<br>third<br>molars               | Sectioned<br>(roots were<br>shaped into<br>bars) | Saline +<br>0.02%<br>sodium<br>azide for<br>up to 1<br>month | NR | Not<br>applica<br>ble                                                  | Not<br>applicable       | Flexura<br>I<br>strengt<br>h     | NaOCL at<br>5.25% for time<br>exposures<br>longer than<br>60min promote<br>deleterious<br>impact on<br>flexural<br>strengh. |

Legends: Sodium hypochlorite (NaOCI); Sodium hydroxide (NaOH); mixture of 2-mol/L NaOH with 10% NaOCI (alkalized NaOCI); mixture of 10% NaOCI with 1% sodium bicarbonate - NaHCO<sub>3</sub> (neutral NaOCI); Ethylenediamine tetraacetic acid (EDTA); EDTA + 0.84 g cetyltrimethylammonium bromide (REDTA); hydroxyethylidene bisphosphonate (HEBP); Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub> - HP); Lactic acid (LA); Citric acid (CA); Maleic acid (MA); Phosphoric acid (PA); Grape seed extract (GSE); Chlorhexidine gluconate (CHX); Solution with antimicrobial activity used for the smear layer removal in final irrigation manufactured by Dentistry (Qmix); Antibacterial root canal cleanser manufactured by Dentsply (MTAD); Calcium hypochlorite (Ca(OCI)<sub>2</sub>); Distilled Water (DW); sodium ascorbate (SA); Not Reported (NR); Ultimate tensile strength (UTS).

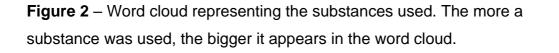
| Author                                   | Irrigate<br>solutions<br>tested                                     | Moment of<br>usage of the<br>solution           | Concentration                                                                                                                                                      | Time                                                                                           | Volume                                                                 | Wash-<br>out           | Type of<br>tooth                           | Tooth condition during analysis                  | Storage conditions                                              | Standard<br>moisture<br>condition | Conclusions (Main findings)                                                                                                                                |
|------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cullen <i>et al.,</i><br>2015            | Saline; NaOCI                                                       |                                                 | 0.5; 2; 4.125; 6.0; and 8.25%<br>NaOCI                                                                                                                             | 60min<br>(changed every<br>6min)                                                               | 2 mL                                                                   | NR                     | Human,<br>mandibul<br>ar molars            |                                                  | 0.5%<br>chloramine-<br>T, than saline<br>at 4°C until<br>test   | NR                                | No statistical<br>difference in<br>modulus of elasticity<br>between groups<br>(NaOCI and Saline).                                                          |
| Grigoratos <i>et al.,</i> 2001           | Saline; NaOCI                                                       |                                                 | 3 and 5% NaOCI                                                                                                                                                     | 2h (changed<br>every 15min)                                                                    | 50 mL                                                                  | Distilled<br>water     | Human,<br>unclear<br>which<br>type         |                                                  | 4% formal-<br>saline                                            | NR                                | NaOCI (3 and 5%)<br>reduced the<br>modulus of elasticity<br>of dentine.                                                                                    |
| John <i>et al.,</i><br>2013              | Saline; NaOCl                                                       |                                                 | 5% NaOCI                                                                                                                                                           | 36min                                                                                          | 12 mL (2<br>mL/min,<br>maintained<br>for 10 min<br>after each 4<br>mI) | NR                     | Human,<br>maxillary<br>central<br>incisors |                                                  | NR                                                              | Yes                               | NaOCI did not<br>impacted the<br>modulus of elasticity<br>on flexural testing,<br>however on<br>ultrasonic<br>measurements a<br>reduction was<br>observed. |
| Jungbluth <i>et</i><br><i>al.,</i> 2011  | Saline; NaOH;<br>NaOCI + water;<br>NaOCI +<br>NaOH; NaOH +<br>water | Not prepared,<br>the root dentin                | 10% NaOCI with water; 10%<br>NaOCI with 2mol/L NaOH;<br>1mol/L NaOH                                                                                                | 30min                                                                                          | 5 mL                                                                   | Ultrapur<br>e water    | Human,<br>maxillary<br>third<br>molars     | Sectioned (roots                                 | 0.2% thymol<br>solution at<br>5°C up to 1<br>year               | Yes                               | No statistical<br>difference in<br>modulus of<br>elasticity.                                                                                               |
| Machnick <i>et al.,</i> 2003             | Saline; NaOCl;<br>EDTA; MTAD                                        | was only<br>exposed to the<br>irrigant solution | 5.25%; 2.63%; 1.3%; and<br>0.66% NaOCI; 17% EDTA;<br>MTAD; MTAD clinical<br>protocol (20 min 1.3% NaOCI<br>+ 5 min MTAD)                                           | 2h (changed<br>every 15 min);<br>except for<br>MTAD clinical<br>protocol                       | 30 mL                                                                  | Deioniz<br>ed<br>water | Human,<br>molars                           | were shaped into<br>bars)                        | 4°C in 100%<br>humidity<br>containing<br>0.1%<br>chloramine T   | NR                                | A significant<br>reduction of<br>modulus of elasticity<br>was observed with<br>2h-MTAD, EDTA,<br>and 0.6% NaOCI.                                           |
| Marending <i>et</i><br><i>al.,</i> 2007a | Ultrapure<br>water; NaOCI                                           |                                                 | 1; 5; and 9% NaOCI                                                                                                                                                 | 1h                                                                                             | 5 mL                                                                   | Ultrapur<br>e water    | Human,<br>maxillary<br>third<br>molars     |                                                  | 0.1% thymol<br>solution after<br>extraction for<br>up to 1 year | NR                                | NaOCI caused a<br>concentration<br>dependent reduction<br>of modulus of<br>elasticity (5 and<br>9%).                                                       |
| Marending <i>et</i><br><i>al.,</i> 2007b | DW; NaOCI;<br>EDTA                                                  |                                                 | 2.5% NaOCI + 17% EDTA +<br>2.5% NaOCI + DW; 2.5%<br>NaOCI + DW + 2.5% NaOCI<br>+ 17% EDTA; 2.5% NaOCI +<br>DW + 2.5% NaOCI + DW;<br>DW + 17% EDTA + DW +<br>DW; DW | 30 min total (21<br>min first<br>solution<br>followed by 3<br>min in each of<br>the following) | 5 mL (each)                                                            | Distilled<br>water     | Human,<br>maxillary<br>third<br>molars     |                                                  | 0.2% thymol<br>solution at<br>5°C for a<br>maximum of<br>1 year | NR                                | No statistical<br>difference in<br>modulus of elasticity<br>between groups                                                                                 |
| Sim <i>et al.,</i><br>2001               | Saline; NaOCl                                                       |                                                 | 0.5 and 5.25% NaOCI                                                                                                                                                | 2h (changed<br>every 10 min)                                                                   | 200 mL                                                                 | Water                  | Human,<br>unclear<br>which<br>type         |                                                  | 4% formal-<br>saline                                            | NR                                | Only 5.25% NaOCI reduces the elastic modulus of dentine.                                                                                                   |
| Wang <i>et al.,</i><br>2017a             | Saline; MA;<br>NaOCl; EDTA                                          | During<br>preparation:<br>2.5% NaOCI            | 2.5% NaOCl; 7% MA +2.5%<br>NaOCl; 17% EDTA +2.5%<br>NaOCl                                                                                                          | 7% MA for 30s,<br>45s, 1min or<br>3min + 1 min                                                 | 5 mL (each)                                                            | DW                     | Human,<br>single<br>rooted                 | Sectioned:<br>coronal removal;<br>longitudinally | 0.2% sodium<br>azide until<br>use                               | NR                                | All protocols<br>reduced the<br>modulus of elasticity                                                                                                      |

**Table 4.** Description of data obtained on included *in vitro* studies that evaluated modulus of elasticity properties.

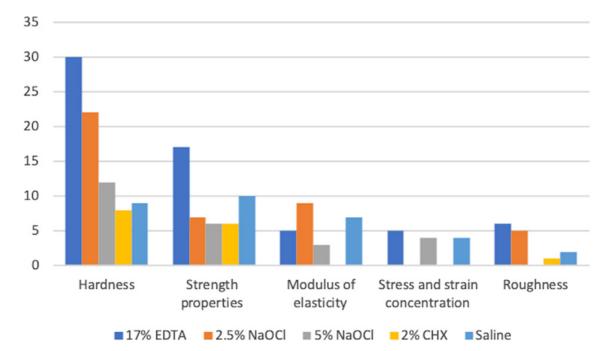
| between fil<br>after, it wa<br>used the<br>evaluated<br>solutions | for 17% EDTĂ<br>+1min NaOCI;                          | premolar<br>s                         | sliced, embedded<br>in acrylic resin,<br>polished and<br>tested | after irrigation. MA<br>solutions were more<br>aggressive,<br>specially after 1min. |
|-------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Legends: Sodium hypochlorite (NaOCI); Ethyl                       | nediamine tetraacetic acid (EDTA); Antibacterial root | canal cleanser manufactured by Dentsp | bly (MTAD); Maleic acid (MA) Distilled                          | d water (DW); Not reported (NR)                                                     |


**Table 5.** Description of data obtained on included studies (*in vitro* and *in silico*) that evaluated stress and strain concentration during mechanical preparation using the irrigant solutions.

| Author                                 | Type<br>of<br>study | Irrigate<br>solutions<br>tested | Moment of usage of the solution                                                  | Concentration                                                                                              | Time                               | Volu<br>me  | Wash-<br>out | Type of<br>tooth                                       | Storage<br>conditio<br>ns          | Propriety considered                   | Conclusions (Main findings)                                                                                        |
|----------------------------------------|---------------------|---------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|--------------|--------------------------------------------------------|------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Belli <i>et al.</i> ,<br>2014          | in<br>silico        | NaOCI;<br>EDTA;<br>MTAD         | Not applicable                                                                   | 5.25% NaOCI; 17% EDTA                                                                                      | centra                             | incisor     | (human) wi   | ement model of<br>th complete filli<br>the restorative | ng and                             | Stress (Finite<br>Element<br>Analysis) | NaOCI, EDTA and MTAD<br>increased the stresses at root<br>dentine.                                                 |
| Goldsmith et al., 2002                 | in vitro            | Saline<br>and<br>NaOCl          | During mechanical testing,<br>the solution was inserted and<br>the TSS monitored | 7.3%; 5.1%; and 3% NaOCI                                                                                   | 30 min<br>(each)                   | NR          | Saline       | Human,<br>premolars                                    | 4%<br>formal<br>saline             | TSS                                    | 3.0%, 5.1%, and 7.3% NaOCI<br>had no statistically significant<br>effect.                                          |
| Rajasingham<br><i>et al.</i> , 2010    | in vitro            | Saline;<br>NaOCl;<br>EDTA       | During preparation, before mechanical stimuli                                    | 3 and 5% NaOCI; 17% EDTA;<br>3% NaOCI + 17% EDTA; 5%<br>NaOCI + 17% EDTA                                   | 30 min<br>(each)                   | NR          | Saline       | Human,<br>premolars                                    | 4%<br>formal-<br>saline            | TSS                                    | 5% NaOCI alone, and when<br>alternated with 17% EDTA for<br>sufficient duration may<br>significantly increase TSS. |
| Sim <i>et al.,</i><br>2001             | In vitro            | Saline;<br>NaOCl                | During mechanical testing,<br>the solution was inserted and<br>the TSS monitored | Scenarios altering from saline<br>only; to different combinations<br>using saline, 0.5% and 5.25%<br>NaOCl | 2h<br>(changed<br>every 30<br>min) | Uncle<br>ar | Water        | Human,<br>second<br>premolars<br>(decoronate<br>d)     | 4%<br>formal<br>saline             | TSS                                    | The use of 5.25% NaOCI increased TSS concentration during mechanical loading.                                      |
| Sobhani <i>et</i><br><i>al.</i> , 2010 | in vitro            | Saline;<br>NaOCl;<br>EDTA       | Final, before mechanical stimuli                                                 | 5% NaOCI; 5%NaOCI + 17%<br>EDTA                                                                            | 10 min                             | 3mL         | Saline       | Human,<br>premolars                                    | 10 mL of<br>4%<br>formal<br>saline | TSS                                    | 5% NaOCI alone, and when<br>alternated with 17% EDTA for<br>sufficient duration may<br>significantly increase TSS. |
| Legends: Sodi                          | um hypo             | L<br>chlorite (NaO              | CI); Ethylenediamine tetraacetic                                                 | acid (EDTA); antibacterial root cana                                                                       | l<br>al cleanser n                 | nanufact    | ured by De   | entsply (MTAD)                                         |                                    | ace strain (TSS); I                    | <i>`</i>                                                                                                           |


| Author                         | Irrigate solutions<br>tested                                             | Moment of<br>usage of<br>the<br>solution                                                  | Concentration                                                                              | Time            | Volume | Wash-out                    | Type of tooth                                         | Tooth<br>condition<br>during<br>analysis  | Storage conditions                                                           | Standard<br>moisture<br>condition | Conclusions (Main findings)                                                                                                                                                                                    |
|--------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|--------|-----------------------------|-------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Akbulut <i>et al.,</i><br>2019 | DW; Vinegars<br>(pomegranate; apple<br>cider; grape); NaOCl;<br>CHX; OCT | The root<br>dentin was<br>only<br>exposed to<br>the irrigant<br>solution<br>priot to test | 2.5% NaOCI,<br>2% CHX                                                                      | 15/ 30<br>min   | NR     | NR                          | Human<br>mandibular<br>incisor teeth                  | All studies<br>used<br>sectioned<br>roots | Distilled water<br>for <3 months<br>until further<br>processing              | NR                                | Only vinegar solutions shown a<br>softening effect on the root canal<br>dentin over time, and increased<br>roughness.                                                                                          |
| Ari <i>et al.,</i> 2004        | DW; NaOCl; H <sub>2</sub> O <sub>2</sub> ;<br>EDTA; CHX                  |                                                                                           | 5.25% NaOCI;<br>2.5% NaOCI;<br>3% H <sub>2</sub> O <sub>2</sub> ; 17%<br>EDTA; 0.2%<br>CHX | 15 min          | 5mL    | Distilled<br>water          | Human<br>mandibular<br>anterior teeth                 |                                           | Immediately<br>stored in<br>buffered saline<br>and submitted<br>to the study | NR                                | Only CHX and H <sub>2</sub> O <sub>2</sub> solutions did<br>not lead to higher roughness than<br>distilled water.                                                                                              |
| Ballal <i>et al.,</i><br>2015  | Saline; CIO <sub>2</sub> ; EDTA;<br>MA; NaOCI                            |                                                                                           | 13.8% CIO <sub>2</sub> ;<br>17% EDTA; 7%<br>MA; 2.5%<br>NaOCI                              | 1 min           | 5mL    | Distilled<br>water          | Human<br>maxillary<br>central<br>incisors             |                                           | 0.2% sodium<br>azide at 4°C<br>until further<br>processing                   | NR                                | All solutions lead to higher<br>roughness than saline, MA the<br>highest, followed by NaOCI and<br>EDTA, and than by CIO <sub>2</sub> .                                                                        |
| Ballal <i>et al.,</i><br>2010  | Saline; EDTA; MA                                                         |                                                                                           | 17% EDTA; 7%<br>MA                                                                         | 1 min           | 1mL    | NR                          | Human<br>maxillary<br>central<br>incisors             |                                           | 0.2% sodium<br>azide until<br>further<br>processing                          | NR                                | All solutions lead to higher<br>roughness than saline, MA the<br>highest, followed by EDTA.                                                                                                                    |
| Bello <i>et al.,</i><br>2019   | DW; EDTA; CA; GA                                                         |                                                                                           | 17% EDTA;<br>10% CA; 5%<br>GA; 10% GA;<br>17% GA                                           | 1 min           | 50mL   | 5-mL<br>distilled<br>water. | Human<br>mandibular<br>teeth                          |                                           | Saline solution<br>at 4 °C until<br>further tests                            | NR                                | All solutions lead to higher roughness than DW.                                                                                                                                                                |
| Eldeniz <i>et al.,</i><br>2005 | DW; CA + NaOCI;<br>EDTA + NaOCI                                          |                                                                                           | 19% CA +<br>5.25% NaOCI;<br>17% EDTA +<br>5.25% NaOCI                                      | 150 s<br>(each) | NR     | Not reported                | Human<br>mandibular<br>anterior teeth                 |                                           | Phosphate<br>buffered saline<br>at 4°C until<br>used                         | NR                                | Only the protocol using CA<br>significantly increased surface<br>roughness in comparison to DW.                                                                                                                |
| Patil and Uppin,<br>2011       | DW; NaOCl; H2O2;<br>EDTA; CHX.                                           |                                                                                           | 5% NaOCl;<br>2.5% NaOCl;<br>3% H₂O₂; 17%<br>EDTA; 0.2%<br>CHX                              | 15 min          | 5mL    | Distilled<br>water          | Human<br>maxillary and<br>mandibular<br>incisor teeth |                                           | 37°C in<br>buffered saline<br>until used                                     | NR                                | Only the protocol using<br>chlorhexidine gluconate did not<br>increase the surface roughness of<br>root canal dentin in comparison to<br>DW.<br>gen peroxide (H <sub>2</sub> O <sub>2</sub> - HP); citric acid |

**Table 6.** Description of data obtained on included *in vitro* studies that evaluated roughness properties.


Legends: Sodium hypochlorite (NaOCI); Octenidine-hydrochloride (OCT); Chlorhexidine gluconate (CHX); Chlorine dioxide (ClO<sub>2</sub>); Ethylenediamine tetraacetic acid (EDTA); Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub> - HP); citric acid (CA); glycolic acid (GA); maleic acid (MA); Distilled Water (DW); Not Reported (NR)



## Figure 1- Flowchart of study selection.







**Figure 3** – Relation between properties tested and the most substance used. CHX, chlorhexidine.

## SUPPLEMENTARY REFERENCES

1. Cruz-Filho AM, Sousa-Neto MD, Savioli RN, et al. Effect of chelating solutions on the microhardness of root canal lumen dentin. J Endod 2011;37:358–62.

 Pascon FM, Kantovitz KR, Sacramento PA, et al. Effect of sodium hypochlorite on dentine mechanical properties: a review. J Dent 2009;37:903–8.
 Akcay I, Sen BH. The effect of surfactant addition to EDTA on microhardness of root dentin. J Endod 2012;38:704–7.

4. Zhang K, Kim YK, Cadenaro M, et al. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod 2010;36:105–9.

5. Uzunoglu E, Aktemur S, Uyanik MO, et al. Effect of

thylenediaminetetraacetic acid on root fracture with respect to concentration at different time exposures. J Endod 2012;38:1110–3.

6. Uzunoglu E, Yilmaz Z, Erdogan O, G€orduysus M. Final irrigation regimens affect fracture resistance values of root-filled teeth. J Endod 2016;42:493–5.

7. Wang L, Zhao Y, Mei L, et al. Effect of application time of maleic acid on smear layer removal and mechanical properties of root canal dentin. Acta Odontol Scand 2017;75:59–66.

8. Souza EM, Quadros JDRP, Silva EJNL, et al. Volume and/or time of NaOCI influences the fracture strength of endodontically treated bovine teeth. Braz Dent J 2019;30:31–5.

9. Garcia AJA, Kuga MC, Palma-dibb RG, et al. Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. J Investig Clin Dent 2013;4:229–32.

10. Aranda-garcia AJ, Kuga MC, Chavez-Andrade G, et al. Effect of final irrigation protocols on microhardness and erosion of root effect of final irrigation protocols on microhardness and erosion of root canal dentin. Microsc Res Tech 2013;76:1079–83.

11. Zaparolli D, Saquy PC, Cruz-filho AM. Effect of sodium hypochlorite and EDTA irrigation, individually and in alternation, on dentin microhardness at the furcation area of mandibular molars. Braz Dent J 2012;23:654–8.

12. Pimenta JA, Zaparolli D, Pecora JD, Cruz-filho AM. Chitosan: effect of a new chelating agent on the microhardness of root dentin. Braz Dent J 2012;23:212–7.

13. Dineshkumar MK, Vinothkumar TS, Arathi G, et al. Effect of ethylene diamine tetra-acetic acid, MTAD TM, and HEBP as a final rinse on the microhardness of root dentin. J Clin Exp Dent 2012;15:170–3.

14. Sayin TC, Serper A, Cehreli ZC, Otlu H. The effect of EDTA, EGTA, EDTAC, and tetracycline-HCl with and without subsequent NaOCl treatment on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:418–24.

15. Oliveira LD, Carvalho CAT, Nunes W, et al. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:125–8.

16. Eldeniz AU, Erdemir A, Belli S. Effect of EDTA and citric acid solutions on the microhardness and the roughness of human root canal dentin. J Endod 2005;31:107–10.

17. Slutzky-goldberg I, Maree M, Liberman R, Heling I. Effect of sodium hypochlorite on dentin microhardness. J Endod 2004;30:2–4.

 Cruz-filho AM, De Paula EA, Pecora JD, Souza-Neto MD. Effect of different EGTA concentrations on dentin microhardness. Braz Dent J 2002;13:188–90.
 Baldasso FER, Roleto L, Silva V, et al. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Braz Oral Res 2017;31:1–8.

20. Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dent 1999;27:43–6.

21. Nikhil V, Jaiswal S, Bansal P, et al. Effect of phytic acid,

ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin. J Conserv Dent 2016;19:179–83.

22. Tuncer AK, Tuncer S, Siso SH. Effect of QMix irrigant on the microhardness of root canal dentine. Aust Dent J 2015;60:163–8.

23. Taneja S, Kumari M, Anand S. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine. J Conserv Dent 2014;17:155–8.

24. Marcelino APM, Bruniera JF, Rached-Junior FA, et al. Impact of chemical agents for surface treatments on microhardness and flexural strength of root dentin. Braz Oral Res 2014;28:1–6.

25. Das A, Kottoor J, Mathew J, et al. Dentine microhardness changes following conventional and alternate irrigation regimens: an in vitro study. J Conserv Dent 2014;17:546–9.

26. Akcay I, Erdilek N, Sen BH. The efficacy of an experimental single solution versus alternate use of multiple irrigants on root dentin microhardness. J Clin Exp Dent 2013;5:83–8.

27. Tartari T, De Almeida P, Silva R, et al. A new weak chelator in endodontics: effects of different irrigation regimens with etidronate on root dentin microhardness. Int J Dent 2013;2013:743018.

28. Akbulut MB, Guneser MB, Eldeniz AU. Effects of fruit vinegars on root dentin microhardness and roughnes. J Conserv Dent 2019;22:97–101.

29. Saghiri MA, Delvarani A, Mehrvarzfar P, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e29–34.

30. De-Deus G, Paciornik S, Mauricio MHP. Evaluation of the effect of EDTA, EDTAC and citric acid on the microhardness of root dentine. Int Endod J 2006;39:401–7.

31. Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod 2004;30:792–5.

32. Bello YD, Fracaro H, Paula A, et al. Glycolic acid as the final irrigant in endodontics: mechanical and cytotoxic effects. Mater Sci Eng C 2019;100:323–
9.

33. Akbulut MB, Terlemez A. Does the photon-induced photoacoustic streaming activation of irrigation solutions alter the dentin microhardness? Photobiomodul Photomed Laser Surg 2019;37:38–44.

34. Saha SG, Sharma V, Bharadwaj A, et al. Effectiveness of various endodontic irrigants on the micro-hardness of the root canal dentin: an in vitro study. J Clin Diagnostic Res 2017;11:1–4.

35. Ballal V, Karthikeyan S, Foschi F. Evaluation of chlorine dioxide irrigation solution on the microhardness and surface roughness of root canal dentin. Eur J Prosthodont Restor Dent 2015;23:173–8.

36. Aslantas EE, Buzoglu HD, Altundasar E, Serper A. Effect of EDTA, sodium hypochlorite, and chlorhexidine gluconate with or without surface modifiers on dentin microhardness. J Endod 2014;40:876–9.

37. Kalluru RS, Kumar ND, Ahmed S, et al. Comparative evaluation of the effect of EDTA, EDTAC, NaOCI and MTAD on microhardness of human dentin: an invitro study. J Clin Diagnostic Res 2014;8:39–41.

 Ulusoy €OIA, G€org€ul G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion. Aust Endod J 2013;39:66–72.

39. Patil CR, Uppin V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: an in vitro study. Indian J Dent Res 2011;22:22–7.

40. Ballal NV, Mala K, Bhat KS. Evaluation of the effect of maleic acid and ethylenediaminetetraacetic acid on the microhardness and surface roughness of human root canal dentin. J Endod 2010;36:1385–8.

41. Ghisi AC, Kopper P, Baldasso FER, et al. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness. Braz Dent J 2014;25:420–4.

42. Khoroushi M, Tavakol F, Shirban F, Ziaei S. Influence of intracanal irrigants on coronal fracture resistance of endodontically treated and bleached teeth: an in vitro study. Contemp Clin Dent 2017;8:552–7.

43. Gu L, Huang X, Griffin B, et al. Primum non nocere: the effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater 2017;1:144–56.
44. Souza EM, Calixto AM, Nara C, et al. Similar influence of stabilized alkaline and neutral sodium hypochlorite solutions on the fracture resistance of root canal – treated bovine teeth. J Endod 2014;40:1600–3.

45. Wang TF, Feng XW, Gao YX, et al. Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin. J Huazhong Univ Sci Technolog Med Sci 2017;37:568–76.

46. Grigoratos D, Knowles J, Ng Y, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J 2001;34:113–9.

47. Bhandary S, Kakamari S, Srinivasan R, et al. A comparative evaluation of the effect of 8% and 17% ethylenediaminetetraacetic acid exposure for 1 min and 10 min on the fracture resistance of endodontically treated roots: an in vitro study. J Conserv Dent 2017;20:21–4.

48. Cullen JKT, Wealleans JA, Kirkpatrick TC, Yaccino JM. The effect of 8.25%sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus. J Endod 2015;41:920–4.

49. Ayad MF, Bahannan SA, Rosenstiel SF. Influence of irrigant, dowel type, and root-reinforcing material on fracture resistance of thin-walled endodontically treated teeth. J Prosthodont 2011;20:180–9.

50. Al-kahtani AM, Al-fawaz H, Al-sarhan M, Al-Ali K. Fracture resistance of teeth obturated with RealSeal using two different chelating agents: an in vitro study. J Contemp Dent Pract 2010;11:1–6.

51. Marending M, Paque F, Fischer J, Zehnder M. Impact of irrigant sequence on mechanical properties of human root dentin. J Endod 2007;33:1325–8.

 52. Machnick TK, Torabinejad M, Munoz CA, Shabahang S. Effect of MTAD on flexural strength and modulus of elasticity of dentin. J Endod 2003;29:747–50.
 53. Sim TPC, Knowles JC, Ng Y-L, et al. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J 2001;34:120–32.

54. Lantigua-Domínguez MC, Pedrinha VF, Silva LCOA, et al. Resistance: an in vitro study. Iran Endod J 2018;13:367–72.

55. Cecchin D, Giaretta V, Cadorin B, et al. Effect of synthetic and naturalderived novel endodontic irrigant solutions on mechanical properties of human dentin. J Mater Sci Mater Med 2017;28:1–6.

56. Tiwari S, Nikhade P, Chandak M, et al. Impact of various irrigating agents on root fracture: an in vitro study. J Contemp Dent Pract 2016;17:659–62.

57. Cecchin D, Paula A, Albino M, et al. Evaluation of antimicrobial effectiveness and dentine mechanical properties after use of chemical and natural auxiliary irrigants. J Dent 2015;43:695–702.

58. Jungbluth H, Marending M, De-deus G, et al. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin. J Endod 2011;37:693–6.

59. Mai S, Kyung Y, Arola DD, et al. Differential aggressiveness of ethylenediamine tetraacetic acid in causing canal wall erosion in the presence of sodium hypochlorite. J Dent 2010;38:201–6.

60. Marending M, Luder HU, Brunner TJ, et al. Effect of sodium hypochlorite on human root dentine: mechanical, chemical and structural evaluation. Int Endod J 2007;40:786–93.

61. Ayranci F, Ayranci L, Ozdogan A, et al. Resistance to vertical root fracture of apicoected teeth using different devices during two root canal irrigation procedures. Lasers Med Sci 2018;33:1685–91.

62. Khoroushi M, Ziaei S, Shirban F, Tavakol F. Effect of intracanal irrigants on coronal fracture resistance of endodontically treated teeth undergoing combined bleaching protocol: an in vitro study. J Dent 2018;15:266–74.

63. John C, Lost C, Elayouti A. Ultrasonic monitoring of the effect of sodium hypochlorite on the elasticity of dentine. Int Endod J 2013;1:477–82.

64. Sobhani OE, Gulabivala K, Knowles JC, Ng Y. The effect of irrigation time, root morphology and dentine thickness on tooth surface strain when using 5% sodium hypochlorite and 17% EDTA. Int Endod J 2010;43:190–9.

65. Rajasingham R, Ng Y, Knowles JC, Gulabivala K. The effect of sodium hypochlorite and ethylenediaminetetraacetic acid irrigation, individually and in alternation, on tooth surface strain. Int Endod J 2010;43:31–40.

66. Goldsmith M, Gulabivala K, Knowles JC. The effect of sodium hypochlorite irrigant concentration on tooth surface strain. J Endod 2002;28:575–9.

# 4. ARTIGO 2

## Title page

# The use of solvents for gutta-percha dissolution/removal during endodontic retreatments: A scoping review

Lara Dotto<sup>1</sup>, Rafael Sarkis Onofre<sup>1</sup>, Ataís Bacchi<sup>1</sup>, Gabriel Kalil Rocha Pereira<sup>2</sup>.

<sup>1</sup>MSciD Post-Graduate Program in Dentistry, School of Dentistry, Meridional Faculty— IMED, Passo Fundo, Brazil

<sup>2</sup>MSciD and Phd Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil

\*Corresponding author: Gabriel Kalil Rocha Pereira, Federal University of Santa Maria, Faculty of Odontology, MSciDPhD Post-Graduate Program in Oral Science, Prosthodontics Unit, 1000 Roraima Av, T Street, Building 26F, Room 2386, UFSM Campus 97105-900, Brazil. Email: <u>gabrielkrpereira@hotmail.com</u>

Artigo publicado no periódico Journal of Biomedical Materials Research: Part B - Applied Biomaterials e formatado segundo suas normas.

#### ABSTRACT

This scoping review study aimed to map the evidence about solvents' use for gutta percha dissolution and removal during endodontic retreatments. The study protocol followed the Joanna Briggs Institute guidelines, available online (https://osf.io/5vy8n/). Reporting was based on PRISMA Extension for Scoping Reviews. We selected dentistry studies that considered the effectiveness of solvents in gutta percha dissolution in endodontic retreatments and compared their performance to the use of instrumentation techniques without solvents. The search and study screening were performed in PubMed and Scopus databases by two independent researchers. A descriptive analysis considered the study design, method/technique used for obturation, method/technique used for instrumentation during retreatment, solvent solutions tested, exposure time, and main findings. A total of 41 studies were included. Despite that, most studies suggested that solvents' use may complicate root canal cleanliness, regardless of the type of instrumentation used, and facilitate the presence of gutta-percha remnants in the root surface. Thus, the use of solvents should be avoided and its use should only be considered if the previous working length was not possible to access without it. Despite that, high heterogeneity was observed, further studies are still encouraged comparing the performance and effects of different solvents in different clinical scenarios.

#### **KEYWORDS**

chloroform, gutta-percha, root canal retreatment, scoping review, solventes

#### **1 INTRODUCTION**

Failure to resolve root canal infection is among the main causes of unsuccessful endodontic treatment.<sup>1</sup> This failure follows signs or symptoms of apical periodontitis, such as, persistent apical lesion and pain.<sup>2</sup> Overall, the endodontic causes of failure essentially involve existing infection or re-infection.<sup>3</sup> If possible, the first nonsurgical option considered for a failed primary endodontic treatment is retreatment. It requires the removal of the filling root material so that the root canals can be shaped and cleaned.<sup>1</sup> Different techniques and materials allow this: hand or mechanical (rotatory or reciprocation) instrumentation used commonly on the primary endodontic treatment, rotary files designed explicitly for retreatments, ultrasonic tips and files, heat pluggers, and Nd:YAG lasers.<sup>4,5</sup> However, a barrier to retreatment is access to the obturator material for its removal to be effective, especially when it is well condensed and resistant to instrument penetration or, most critically, in curvature regions of the root where perforation is a risk.<sup>1,3,6-9</sup> In these cases, the use of solvents is commonly advocated.<sup>1,3,6-9</sup>

Solvents are solutions used in endodontic therapy to soften the root filling material, usually the gutta-percha (GP).<sup>2,10</sup> Many types of solvents are available, such as, chloroform, eucalyptol, orange oil, tetrachloroethylene (Endosolv), and xylene, but none meet all the requirements of an ideal solvent, which should be nontoxic and noncarcinogenic to adjacent tissues, patient, and clinicians; deliver efficient GP softening; be viable for an adequate time and cost-effective.<sup>4</sup> For example, chloroform has long been the solvent of choice because of its high volatility, but it is the most cytotoxic to periapical tissues, it could be even hepatotoxic and has been classified as a Class 2B carcinogenic material.<sup>11,12</sup> Therefore, new substances have been tested,<sup>3,4,13-15</sup> but none have been shown to have sufficient properties to justify their use. Thus, to choose a solvent is still a challenge.

Many studies<sup>1,4-7,9,10,14-47</sup> have tested the efficacy of files and solvents in removing residual GP during retreatment, or the amount of material remaining after using different files and solvents. However, which methods are more effective and whether solvents are essential for root material filling removal are still unclear. Additionally, scoping reviews offer an important tool that can provide a map of the range of available evidence.<sup>48</sup> Thus, this scoping review study aimed

to map the evidence about the use of solvents for GP dissolution and removal during endodontic retreatments, and discuss the necessity of using such a solution.

## 2 MATERIALS AND METHODS

The protocol of this study was developed prospectively based on the framework proposed by Peters et al., 201548 according to the Joanna Briggs Institute guidelines, and is available online (<u>https://osf.io/5vy8n/</u>). Additionally, the reporting of this scoping review was based on the PRISMA Extension for Scoping Reviews.<sup>49</sup>

## 2.1 Inclusion criteria

We selected dentistry studies that considered the effectiveness of solvents in dissolving GP in endodontic retreatment, comparing their performance to the use of instrumentation techniques without solvents. It included studies that evaluated the effect of at least one solvent solution on GP, regardless of the teeth type (human, bovine, or other animal) and regardless of how the outcome was measured. In relation to study design, we included reviews that discussed GP removal and dissolution in endodontic retreatment, clinical trials, and in vitro laboratory tests. We classified the study design based on the author report. Studies testing other root filling materials than GP were not considered.

## 2.2 Search

The search was performed in two databases, MEDLINE (PubMed) and Scopus, limited to articles written in English, without time restriction. The search strategy was based on MeSH terms for PubMed and specific terms for Scopus using keywords (Table 1). The last search was conducted in September 2019.

## 2.3 Screening

Initially, the search was undertaken using the EndNote software (EndNote X9, Thomson Reuters, New York, NY). Two researchers (LD and GKRP) independently identified articles by first analyzing titles and abstracts for relevance and the eligibility criteria. Retrieved records were classified as either "include," "exclude," or "uncertain". The full-text articles of the included and

uncertain records were selected for further eligibility screening by the same two reviewers, acting independently. Discrepancies in screening of titles and abstracts or full-text articles were resolved through discussion. In case of disagreement, the opinion of a third reviewer was sought.

## 2.4 Charting the results

We created a form using the Excel software (Office, Microsoft, Redmond, Washington, EUA), which three reviewers tested to reach a consensus for data collection. Then, one reviewer extracted the data and another checked it. The data collected were study design, method or technique used for obturation, method or technique used for instrumentation during retreatment (manual or rotary), solvent solutions tested, exposure time, moment of use of the solvent (final rinse or during instrumentation), method to access GP, characteristics of the teeth (human, bovine, or other animals; straight or curved roots; other details), and main findings. In case of identification of systematic or other reviews, data collected were inclusion criteria, number of included articles, main findings, level of evidence generated reported by authors, and conclusions.

#### 2.5 Data analysis

The data synthesis focused on describing the solvent solutions used, their characteristics, and which solvents were necessary and effective for GP dissolution and removal during endodontic retreatment. A descriptive analysis was performed that considered the study design and different solvents tested А word cloud was using tables. created using the website https://www.worditout.com/ to illustrate graphically the prevalence of use of each solution.

#### 3 RESULTS

#### 3.1 Search findings

Figure 1 presents the flow chart for the study selection. The search initially yielded 501 potentially relevant citations (Scopus: n = 239; PubMed: n = 262). After removing duplicates (98) and irrelevant papers (345), 58 citations met the eligibility criteria based on title and abstract. These were obtained and full text

screened, resulting in 41 remaining studies being included in the qualitative synthesis analysis.

#### 3.2 Prior published reviews

Among the studies included in this scoping review, we found a systematic review<sup>5</sup> and a literature review.<sup>4</sup> The systematic review investigated the effectiveness of different procedures in removing root canal filling materials using micro-computed tomography imaging assessment only. In general, considering 22 studies published up to 2008, it corroborated the use of solvents to enhance penetration of files, but not to improve cleaning of the root canal. However, it emphasized that not all protocols fully removed the root canal filling materials and suggested larger preparation sizes and hybrid techniques to reduce the remaining material. The eligibility criteria and the quality or level of evidence were not reported by the authors. The literature review suggested that the use of solvents in the coronal and middle thirds of root canals should be done with caution to avoid potential toxicity (Table 2).

### 3.3 Solvents assessed in included studies

Figure 2 summarizes the substances used in the included studies. The more a substance was used, the larger it appears in the word cloud. Notably, the most commonly used solvents were chloroform, eucalyptol, Endosolv R, and xylol.

# 3.4 Effectiveness of solvents for GP dissolution and removal during endodontic retreatment (experimental results)

The present review included 36 in vitro studies (Table 3) and three ex vivo studies.<sup>6,10,30</sup> In general, most studies found that the use of solvents, regardless of composition, does not present benefits to GP removal. Other studies encouraged consideration of solvents when the GP is difficult to remove because it is closely adhered to the walls or in the apical portion, making it impossible to reach the previous working length,<sup>16,39</sup> or when mechanical methods fail to retrieve of GP in retreatment.<sup>41</sup>

#### 3.4.1 Chloroform

Chloroform was the most-used solvent,<sup>1,7,9,16-19,21,24-26,28-31,33,34,41,43</sup> along with an ethyl ether–chloroform mixture.<sup>6</sup> In general, the studies did not reveal any beneficial effect of chloroform, with the main findings agreeing that using chloroform to remove GP made the process more difficult compared with the control group without any solvent,<sup>7,9,17,19,25,26,28,30,31,33</sup> or did not produce differences compared with the control group.<sup>1,18,29,43</sup>

A few studies showed advantages with chloroform, including much greater efficacy of GP removal with mechanical files,<sup>21</sup> benefits when mechanical methods failed to retrieve GP<sup>41</sup> or when the removal of filling material was difficult,<sup>16</sup> and shortened time of retreatment.<sup>34</sup>

#### 3.4.2 Eucalyptol

Of the studies using eucalyptol as the solvent,<sup>22,23,28,39,45,46</sup> only one did not consider its use a disadvantage.<sup>23</sup> However, the study found no significant difference to the other tested methods, such as, mechanical instrumentation with FlexMaster GT Rotary and ProTaper or manual instrumentation with Hedstroem files, without solvent. Horvath et al., 2009<sup>28</sup> and Boarium et al., 2015<sup>39</sup> concluded that the use of eucalyptol led to more GP and sealer remnants on root canal walls and inside dentinal tubules than in control groups that tested Gates-Glidden drill plus Hedstroem<sup>28</sup> and ProTaper Universal, K3 Endo rotary nickel–titanium system or Gates-Glidden plus K-type file.<sup>39</sup> One study assessed the effectiveness in GP removal of Nd:YAG laser plus eucalyptol or dimethylformamide, finding that the Nd:YAG laser was capable of softening GP in vitro, but the addition of solvents did not improve its removal.<sup>22</sup>

## 3.4.3 Endosolv R

All studies that evaluated this solvent concluded that the use of Endosolv R did not present beneficial effects.<sup>9,14,35,44</sup> One study tested the final irrigation with passive ultrasonic irrigation (PUI) associated with Endosolv R or distilled water; where both strategies were ineffective in removing filling debris from root canal walls.<sup>35</sup>

## 3.4.4 Xylol

Four studies assessed xylol.<sup>10,20,27,38</sup> Two found benefits when xylol was associated with manual instrumentation.<sup>20,27</sup> Rached-Júnior et al., 2014<sup>38</sup> evaluated the removal of filling material under different operatory vision (direct or operating microscope) and methods (ProTaper retreatment with or without solvent and ultrasound with or without solvent), concluding that, independent of the operatory vision, the use of xylol was associated with greater removal of filling material in both evaluated methods. The difference was found under an operating microscope, where the use of ultrasound and xylol provided better results than the mechanical files and xylol, but none of the protocols tested was associated with complete removal of the filling material.<sup>38</sup> Only one study did not find benefits using xylol.<sup>10</sup>

## 3.4.5 Orange oil

Barreto et al., 2016<sup>42</sup> and Salgado et al., 2019<sup>47</sup> evaluated orange oil and concluded no benefit to its use. However, Barreto et al., 2016<sup>42</sup> tested the effect of this substance after using ProTaper retreatment in both groups and performed the final irrigation with PUI and orange oil compared with PUI and sodium hypochlorite (NaOCI), and conventional irrigation with NaOCI. Kumar et al., 2012<sup>32</sup> and Das et al., 2017<sup>15</sup> used RC Solve (an orange oil derivative with the basic ingredient D-limonene) and did not find benefits compared to ProTaper Universal retreatment files or Mtwo retreatment files,<sup>15</sup> or ProTaper Universal Retreatment or Gates-Glidden drill plus Hedstroem,<sup>32</sup> without RC Solve.

## 3.4.6 Xylene

Two studies that evaluated xylene with mechanical or manual instrumentation agreed that, when using manual instrumentation, solvents' use yields better root canal cleanliness.<sup>36,40</sup>

## 3.4.7 Tetrachloroethylene

Mittal et al., 2014<sup>37</sup> found that no technique evaluated was 100% effective in removing filling material, but the use of Gates-Glidden drill plus ProTaper retreatment system with tetrachloroethylene solvent was better than Gates-Glidden drill plus Mtwo or Gates-Glidden drill plus H file, both with and without solvent.

## 4 DISCUSSION

This scoping review provides the first synthesis of information on the use of different solvents during endodontic retreatment on GP dissolution and removal. This scoping review's importance lies in the wide use of these substances during endodontic retreatment.<sup>4,5</sup> However, the literature was unclear on whether these solvents were really effective in GP removal. Based on present data, it was shown that regardless of the instrumentation technique (manual or mechanical) chosen by the clinician, the use of solvents during the process of desobturation may bring disadvantages in root canal cleanliness, and it should only be considered if the previous working length was not possible to access without it.<sup>16,39</sup>

Some studies showed that solvents might make root filling material removal more difficult, as it could make the structure of the material viscous and highly adhesive, resulting in the formation of films of softened GP on the root canal surface, even penetrating into root canal irregularities or dentinal tubules.<sup>14,19,28,31,44</sup> The alteration of material properties in response to the use of solvents may even make the retreatment procedure longer or more difficult. Barreto et al., (2016)<sup>42</sup> corroborated this effect when the solvent (orange oil) was used to associate with PUI. These changes to the filling material's characteristics may reduce the instrumentation effectivity,<sup>42</sup> and the obliteration of root dentinal tubules may also impair the action of intracanal medicaments and the adaptation of the subsequent new filling material on the root canal walls.<sup>10,21,24,27,28</sup> Most studies showed persistence of intracanal GP remnants, regardless of the root third evaluated.<sup>10,14,15,20,27,28,30,40,47,50</sup> However, it was more common and the GP more abundant in the root apical third.<sup>1,6,39,44,47,50,51</sup>

Regarding the type of instrumentation, mechanical systems, even with solvent association, were more ineffective for complete removal of root canal filling<sup>6,10,27,51</sup> than manual files.<sup>20</sup> It may also be due to the effect of the prior mentioned film of softened GP material present at the root canal wall surface<sup>14,19,28,31,44</sup> associated with the files' mechanical motion and the temperature increase generated, reducing the performance of these systems.<sup>10</sup> Besides, mechanical files for retreatment were designed to be used alone, without association with any substance. Thus, it seems that there is no beneficial

effect of the use of solvents with such retreatment files.<sup>7,9,14,15,29,30,32-35,42,44,46,47</sup> Manual instrumentation may also have been the most effective because these files could be more easily manipulated against the walls, removing the debris<sup>10,20</sup> in the cervical third, and the apical third due to the enlargement of the apical foramen.<sup>20,39,52</sup> Further, our review showed that when the performance between manual and mechanical techniques was similar, the studies failed to notice completely cleaned canals, that is, remnants of GP were always present. <sup>6,29</sup> Thus, these contradicting findings might be attributed to differences in specimen assembly, instruments, materials, and methodological procedures.<sup>47</sup>

The literature suggests that there may be no one best system to remove the root filling material entirely.<sup>47,50</sup> Studies have encouraged the combination of methods (manual and mechanical files<sup>6,10,40</sup>;) to achieve cleaner root canals without debris and remnants of material filling.<sup>1,6,31</sup> It is also true when the presence of GP and sealer is seen in deep grooves and depressions on dentin walls in the apical third,<sup>1,28,44</sup> or in dentinal tubules with the increasing dissolution of the root filling material, regions that could require additional instrumentation to remove such material. Or perhaps, this could be the only scenario where the use of solvents can be considered.<sup>7,42</sup>

Retreatment in straight canals is a relatively simple task compared with curved ones.<sup>6,44,50</sup> Furthermore, curved canals may cause instrument distortion or separation and breakage.<sup>6,44</sup> The isthmus region and flattened roots also usually show more residual GP, because the penetration of GP and sealer into the spaces makes the removal of the material more critical.<sup>42</sup> This corroborates the fact that in such scenarios, it is necessary to use different types of instrumentation (manual and mechanical), as well as auxiliary irrigating solutions other than solvents (e.g., NaOCI, chlorhexidine, sterile saline, or distilled water) to optimize the removal of remnant material from the root canals.<sup>1,6,10,17,20,28,41,47,50</sup> However, data in other literature<sup>24</sup> disputes that the material removal technique (e.g., using solvent) is a determining factor in cleaning the root canal walls, defending the obturator material (cement and/or filling material) as an influencing factor. We cannot forget that all of these inconsistent data are based on the high heterogeneity of existing studies and still encourage well-designed studies evaluating this topic.

Studies of solvents' effectiveness in root material filling removal rarely compare the performance of different solvents with each other.<sup>1,9,19,21,23,33,47,51</sup> It is made it difficult, or perhaps erroneous, any conclusion about a solvent's effectiveness and whether it is better than others. Therefore, we suggest studies comparing the performance and effects of different solvents on the effective removal of GP, to make possible recommendations of the situations for its real need, the most suitable solvent for complete material removal (without any detrimental effect such as change in the state of GP and obliteration of the dentinal tubes), and which instrumentation is most indicated in cases where the use of solvent is indispensable.

Despite its strengths, our scoping review has some limitations. The included studies tested various solvents and different instrumentation systems, but they rarely compared such different factors among each other. Moreover, different obturation methods with different sealers were also used; specimens were analyzed under different sizes and shapes and under different assessment methods. All of these factors lead to increased heterogeneity, which limits the quality of the evidence obtained.

#### **5 CONCLUSION**

No unanimous solvent exists for the effective removal of filling material. In fact, most studies suggested that solvents may even complicate root canal cleanliness and facilitate the presence of GP remnants in the root surface. Thus, the use of solvents should be avoided and its use should only be considered if the previous working length was not possible to access without it. Despite that, high heterogeneity was observed, and further studies are still encouraged comparing the performance and effects of different solvents in different clinical scenarios.

## REFERENCES

 Bodrumlu E, Uzun Ö, Topuz Ö, Semiz M. Efficacy of 3 techniques in removing root canal filling material. J Can Dent Assoc. 2008;74(8): 721-721e.
 Patel SBJ. Contemporary endodontics—part 2. Br Dent J. 2011;211: 517-524. 3. Virdee SS, Thomas MBM. A practitioner's guide to gutta-percha removal during endodontic retreatment. Br Dent J. 2017;222(4): 251-257.

4. Good ML, McCammon A. Removal of gutta-percha and root canal sealer: a literature review and an audit comparing current practice in dental schools. Dent Update. 2012;39(10):703-708.

5. Rossi-Fedele G, Ahmed HMA. Assessment of root canal filling removal effectiveness using micro–computed tomography: a systematic review. J Endod. 2017;43(4):520-526.

 Aydin B, Köse T, Çalis, kan MK. Effectiveness of HERO 642 versus Hedström files for removing gutta-percha fillings in curved root canals: an ex vivo study. Int Endod J. 2009;42(11):1050-1056.

7. Kfir A, Tsesis I, Yakirevich E, Matalon S, Abramovitz I. The efficacy of five techniques for removing root filling material: microscopic versus radiographic evaluation. Int Endod J. 2012;45(1):35-41.

8. Fruchi LDC, Ordinola-Zapata R, Cavenago BC, Hungaro Duarte MA, Da Silveira Bueno CE, De Martin AS. Efficacy of reciprocating instruments for removing filling material in curved canals obturated with a single-cone technique: a micro-computed tomographic analysis. J Endod. 2014;40(7):1000-1004.

9. Sa \_\_\_\_\_glam BC, Koçak MM, Türker SA, Koçak S.
 Efficacy of different solvents in removing gutta-percha from curved root canals:
 a microcomputed tomography study. Aust Dent J. 2014;40(2):76-80.

10. Betti LV, Bramante CM, De Moraes IG, Bernardineli N, Garcia RB. Comparison of GPX with or without solvent and hand files in removing filling materials from root canals: an ex vivo study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2010;110(5):675-680.

 11. Friedman SSA, Tamse A. Endodontic retreatment—case selection and technique. Part 3; retreatment techniques. J Endod. 1990;16: 543-549.
 12. Tas, demir T, Er K, Yildirim T, Çelik D. Efficacy of three rotary NiTi instruments in removing gutta-percha from root canals. Int Endod J. 2008;41(3):191-196.

13. Marques da Silva BB-FF, Leonardi DP, Henrique Borges A, Volpato L, Branco Barletta F. Effectiveness of ProTaper, D-RaCe, and Mtwo retreatment files with and without supplementary instruments in the removal of root canal filling material. Int Endod J. 2012; 45:927-932.

14. Bhagavaldas M, Diwan A, Kusumvalli S, Pasha S, Devale M, Chava D. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: a comparative in vitro study. J Conserv Dent. 2017;20(1):12-16.

15. Das S, De Ida A, Das S, Nair V, Saha N, Chattopadhyay S. Comparative evaluation of three different rotary instrumentation systems for removal of guttapercha from root canal during endodontic retreatment: an in vitro study. J Conserv Dent. 2017;20(5):311-316.

16. Wilcox LR. Thermafil retreatment with and without chloroform solvent. J Endod. 1993;19(11):563-566.

17. Hülsmann M, Stotz S. Efficacy, cleaning ability and safety of different devices for gutta-percha removal in root canal retreatment. Int Endod J. 1997;30(4):227-233.

18. Wolcott JFVHT, Hicks ML. Thermafil retreatment using a new "system B" technique or a solvent. J Endod. 1999;25:761-764.

 Sae-Lim V, Indulekha D, Lim BK, Lee HL. Effectiveness of ProFile .04 taper rotary instruments in endodontic retreatment. J Endod. 2000;26 (2):100-104.
 Betti LV, Bramante CM. Quantec SC rotary instruments versus hand files for gutta-percha removal in root canal retreatment. Int Endod J. 2001;34(7):514-519.

21. Ferreira JJ, Rhodes JS, Pitt Ford TR. The efficacy of gutta-percha removal using ProFiles. Int Endod J. 2001;34(4):267-274.

22. Viduc<sup>\*</sup>ic D, Jukic S, Karlovic Z, Božic Ž, Miletic I, Anic I. Removal of guttapercha from root canals using an Nd:YAG laser. Int Endod J. 2003;36(10):670-673.

23. Hülsmann M, Bluhm V. Efficacy, cleaning ability and safety of different rotary NiTi instruments in root canal retreatment. Int Endod J. 2004;37(7):468-476.

24. Ezzie EFA, Solomon E, Spears R, He J. Efficacy of retreatment techniques for a resin-based root canal obturation material. J Endod. 2006;32:341-344.
25. Hassanloo A, Watson P, Finer Y, Friedman S. Retreatment efficacy of the epiphany soft resin obturation system. Int Endod J. 2007;40(8): 633-643.

26. Gu LS, Ling JQ, Wei X, Huang XY. Efficacy of ProTaper universal rotary retreatment system for gutta-percha removal from root canals. Int Endod J. 2008;41(4):288-295.

27. Betti LV, Bramante CM, de Moraes IG, Bernardineli N, Garcia RB. Efficacy of Profile .04 taper series 29 in removing filling materials during root canal retreatment-an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2009;108(6):e46-e50.

28. Horvath SD, Altenburger MJ, Naumann M, Wolkewitz M, Schirrmeister JF. Cleanliness of dentinal tubules following gutta-percha removal with and without solvents: a scanning electron microscopic study. Int Endod J. 2009;42(11):1032-1038.

29. Takahashi CM, Cunha RS, De Martin AS, Fontana CE, Silveira CFM, da Silveira Bueno CE. In vitro evaluation of the effectiveness of ProTaper universal rotary retreatment system for Gutta-Percha removal with or without a solvent. J Endod. 2009;35(11):1580-1583.

30. Dadresanfar B, Mehrvarzfar P, Saghiri MA, Ghafari S, Khalilak Z, Vatanpour M. Efficacy of two rotary systems in removing gutta-percha and sealer from the root canal walls. Iran Endod J. 2011;6(2): 69-73.

31. Akhavan H, Azdadi YK, Azimi S, Dadresanfar B, Ahmadi A. Comparing the efficacy of Mtwo and D-RaCe retreatment systems in removing residual guttapercha and sealer in the root canal. Iran Endod J. 2012; 7(3):122-126.

32. Kumar MS, Sajjan GS, Satish K, Varma KM. A comparative evaluation of efficacy of protaper universal rotary retreatment system for gutta-percha removal with or without a solvent. Contemp Clin Dent. 2012;3 (Suppl 2):S160-S163.

33. Ma J, Al-Ashaw AJ, Shen Y, et al. Efficacy of ProTaper universal rotary retreatment system for gutta-percha removal from oval root canals: a micro-computed tomography study. J Endod. 2012;38(11):1516-1520.

34. Khalilak Z, Vatanpour M, Dadresanfar B, Moshkelgosha P, Nourbakhsh H. In vitro comparison of gutta-percha removal with hfile and protaper with or without chloroform. Iran Endod J. 2013;8(1): 6-9.

35. Muller GG, Schonhofen AP, Mora PM, Grecca FS, So MV, Bodanezi A. Efficacy of an organic solvent and ultrasound for filling material removal. Braz Dent J. 2013;24(6):585-590. 36. Reddy N, Admala SR, Dinapadu S, Pasari S, Reddy MP, Rao MSR.

Comparative analysis of efficacy and cleaning ability of hand and rotary devices for gutta-percha removal in root canal retreatment: an in vitro study. J Contemp Dent Pract. 2013;14(4):635-643.

37. Mittal N, Jain J. Spiral computed tomography assessment of the efficacy of different rotary versus hand retreatment system. J Conserv Dent. 2014;17(1):8-12.

38. Rached-Júnior FA, Sousa-Neto MD, Bruniera JFB, Duarte MAH, Silva-Sousa YTC. Confocal microscopy assessment of filling material remaining on root canal walls after retreatment. Int Endod J. 2014;47 (3):264-270.

39. Boariu M, Nica LM, Marinescu A, et al. Efficiency of eucalyptol as organic solvent in removal of gutta-percha from root canal fillings. Rev Chim-Bucharest. 2015;66(6):907-910.

40. Colaco AS, Pai VAR. Comparative evaluation of the efficiency of manual and rotary gutta-percha removal techniques. J Endod. 2015;41 (11):1871-1874. 41. Jain M, Singhal A, Gurtu A, Vinayak V. Influence of ultrasonic irrigation and chloroform on cleanliness of dentinal tubules during endodontic retreatment-an invitro SEM study. J Clin Diagn Res. 2015;9 (5):ZC11-ZC15.

42. Barreto MS, da Rosa RA, Santini MF, et al. Efficacy of ultrasonic activation of NaOCI and orange oil in removing filling material from mesial canals of mandibular molars with and without isthmus. J Appl Oral Sci. 2016;24(1):37-44.
43. Colombo AP, Fontana CE, Godoy A, et al. Efectiveness of the waveone and ProTaper D systems for removing gutta-percha with or without a solvent. Acta Odontol Latinoam. 2016;29(3):262-267.

44. Latheef AA, Miglani R, Indira R, Kader MA, Nasim VS, Shamsuddin SV. Effect of passive ultrasonic irrigation on the cleanliness of dentinal tubules in non-surgical endodontic retreatment with and without solvent: a scanning electron microscope study. Int J Oral Dent Health. 2016;8(7):753-759.

45. Fariniuk LF, Azevedo MAD, Carneiro E, Westphalen VPD, Piasecki L, Da Silva Neto UX. Efficacy of protaper instruments during endodontic retreatment. Indian J Dent Res. 2017;28(4):400-405.

46. Campello AF, Almeida BM, Franzoni MA, et al. Influence of solvent and a supplementary step with a finishing instrument on filling material removal from canals connected by an isthmus. Int Endod J. 2019; 52(5):716-724.

47. Salgado KR, De Castro RF, Prado MC, Brand~ao GA, Da Silva JM, Da Silva EJNL. Cleaning ability of irrigants and orange oil solvent combination in the removal of root canal filling materials. Eur Endod J. 2019; 4(1):33-37.
48. Peters MDGC, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13:141-146.

49. Tricco AC, Lillie E, Zarin W, et al. Research and reporting methods Prisma extension for scoping reviews (PRISMA-ScR): checklist and explanation. Res Reporting Methods Prism. 2018;169:467-473.

50. Abramovitz IR-BS, Baransi B, Kfir A. The effectiveness of a selfadjusting file to remove residual gutta-percha after retreatment with rotary files. Int Endod J. 2012;45:386-392.

51. Aranda-Garcia AJ, Kuga MC, Vázquez-Garcia FA, et al. Persistence of residues after endodontic retreatment related to the obturation technique and to the solvent. World J Dent. 2017;8(1):41-44.

52. Akpinar K, Altunbas, D, Kus, tarci A. The efficacy of two rotary NiTi instruments and H-files to remove gutta-percha from root canals. Med Oral Patol Oral Cir Bucal. 2012;17(3):e506-e511.

# **Table Captions**

Table 1 – Search strategy.

 Table 2 – Summary of findings of included reviews.

**Table 3** – Summary of findings of included experimental studies (in vitro and ex vivo).

# **Figure Captions**

Figure 1 – Flowchart of study selection.

**Figure 2** – Word cloud representing the solvents used. The more a substance was used, the bigger it appears in the word cloud.

# **Table Captions**

Table 1 – Search strategy.

- PubMed: "Solvent" OR "Solvents" OR "Gutta-percha Solvent" OR "Chloroform" OR "Eucalyptol" OR "Orange Oil" OR "Endosolv E" OR "Xylene" AND "Gutta-Percha"[Mesh] OR "Gutta-Percha removal" NOT "Sealing" NOT "Bond".

- Scopus: "Solvent" OR "Solvents" OR "Gutta-percha Solvent" OR "Chloroform" OR "Eucalyptol" OR "Orange Oil" OR "Endosolv E" OR "Xylene" AND "Gutta-Percha" [mesh] OR "Gutta-Percha removal" AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO ( DOCTYPE, "re")) AND (LIMIT-TO (LANGUAGE, "English")).

Table 2 – Summary of findings of included reviews.

| Author                             | Type of study        | Data base considered                                                                                                                                                                                                                                                                                                                                                                               | Eligibility criteria | Number of<br>included<br>articles | Quality/Level<br>of evidence<br>reported by<br>authors | Main findings                                                                                                                                                                                                                                                                                                   |
|------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rossi-<br>Fedele<br>et al.<br>2017 | Systematic<br>Review | PubMed and major endodontic<br>journals (Australian Endodontic<br>Journal; Dental Traumatology<br>(previously named Endodontics<br>and Dental Traumatology);<br>International Endodontic Journal;<br>Journal of Endodontics; and Oral<br>Surgery, Oral Medicine, Oral<br>Pathology (previously published<br>as Oral Surgery, Oral Medicine,<br>Oral Pathology, Oral Radiology,<br>and Endodontics) | Not reported         | 22                                | Not reported                                           | Corroborate the use of<br>solvents to enhance<br>penetration of files, but not<br>to improve cleaning of the<br>root canal. However, it<br>emphasizes that all<br>protocols considered not<br>fully remove the root canal<br>filling materials. Thus,<br>larger preparation sizes and<br>hybrid techniques were |

|                        |                      |              |              |              |              | recommended to reduce<br>the remaining material.                                                                                 |
|------------------------|----------------------|--------------|--------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| Good<br>et al.<br>2012 | Literature<br>Review | Not reported | Not reported | Not reported | Not reported | Corroborate the use of<br>solvents in coronal and<br>middle thirds of root canals<br>cautiously to avoid its toxic<br>potential. |

 Table 3 – Summary of findings of included experimental studies (in vitro and ex vivo).

|                        |                     | Obturation                                                   |                                                                                                                    |                                                 |                                                                                                          | Retreatment                           |                         |                                                                            |                                                   |                     | Analy                                                                                                                                                                      | /sis                                                               |                                                                                                                                                                                                                                                                                                                |
|------------------------|---------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|----------------------------------------------------------------------------|---------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author                 | Study<br>desig<br>n | Method/technique                                             | Cement<br>type used                                                                                                | Restoratio<br>n                                 | Instrumentation technique                                                                                | Solvents used                         | Time of<br>exposur<br>e | Moment<br>of using                                                         | Control condition                                 | Final<br>Irrigation | Method to<br>access GP<br>presence                                                                                                                                         | Type and<br>characteristic<br>s of the<br>substrate                | Main findings                                                                                                                                                                                                                                                                                                  |
| Akhavan et<br>al. 2012 | In<br>vitro         | Lateral condensation technique (main and secondary GP cones) | AH26 -<br>root canal<br>sealer<br>resin-<br>based,<br>non-<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(NR) | Mechanical<br>instrumentation<br>(Gates Glidden<br>#3 + Mtwo or<br>Gates Glidden #3<br>+ D-RaCe)         | Chloroform                            | NR                      | Prior and<br>after each<br>instrument<br>(1x)                              | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 5.25%<br>NaOCI      | Visual inspection<br>at<br>stereomicroscop<br>e                                                                                                                            | Human<br>molars,<br>sectioned<br>vertically,<br>before<br>analysis | The use of<br>solvent<br>difficulted GP<br>removal on<br>coronal and<br>middle<br>sections. No<br>effect on<br>apical.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                              |
| Aydin et al.<br>2009   | Ex<br>vivo          | Lateral condensation technique (main and secondary GP cones) | Diaket -<br>polyketone<br>-based<br>root canal<br>sealer (3M<br>Espe)                                              | NR                                              | Mechanical<br>instrumentation<br>(HERO 642) or<br>Manual<br>instrumentation<br>(Hedstroem + H-<br>files) | Ethyl ether–<br>chloroform<br>mixture | NR                      | Between<br>instrument<br>s, until<br>achieving<br>the<br>working<br>length | Absence<br>of solvent<br>(only<br>instrumen<br>t  | NR                  | Analyzing<br>digitally<br>photographs of<br>each section.<br>The percentage<br>of the residual<br>canal filling was<br>determined for<br>each root third of<br>each canal. | Human<br>molars,<br>sectioned<br>horizontally                      | Canal filling<br>remnants<br>were least in<br>the H-files +<br>solvent group,<br>but there was<br>no statistically<br>significant<br>difference<br>between two<br>hand file<br>groups.<br>There was<br>significantly<br>less canal<br>filling in the<br>hand file<br>groups than in<br>the HERO 642<br>groups. |

| Barreto et<br>al. 2016 | In<br>vitro | Single cone technique (main cone only)                       | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Mechanical<br>instrumentation<br>(ProTaper<br>Retreatment +<br>Pro Taper Next)                                                         | Orange Oil | 1min | Between<br>instrument<br>s | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%<br>NaOCI. | CT scan                                                                                                                                                                                                                                                                                                                                                                              | Human molars                                          | Passive<br>ultrasonic<br>irrigation with<br>solvent did not<br>improve the<br>removal of<br>filling material<br>from mesial<br>roots of<br>mandibular<br>molars when<br>compared to<br>conventional<br>irrigation with<br>NaOCI.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
|------------------------|-------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------------------------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Betti et al.<br>2001   | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer (SS<br>White)        | Sealed<br>with<br>temporary<br>material<br>(Cimpat,<br>Septodont) | Mechanical<br>instrumentation<br>(Quantec SC<br>rotary<br>instruments) or<br>manual<br>instrumentation<br>(K-type file +<br>Hedstroem) | Xylol      | NR   | Prior<br>retreatmen<br>t   | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Quantitative<br>analysis of teeth<br>halves using a<br>scanner and<br>evaluated using<br>Sigma Scan<br>of Ware.<br>Qualitative<br>analysis of<br>radiographs<br>taken after the<br>removal of the<br>filling, and each<br>third of the canal<br>was evaluated.<br>The radiographs<br>were digitized<br>using a scanner<br>and each half<br>evaluated for<br>quantitative<br>analysis | Human central<br>incisors                             | Hand<br>instruments<br>and solvent<br>cleaned<br>canals<br>more<br>effectively.                                                                                                                                                                                                             |
| Betti et al.<br>2009   | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Septodon<br>t)   | Sealed<br>with<br>temporary<br>material<br>(Coltosol,<br>Coltene) | Manual<br>instrumentation<br>(K-type file +<br>Hedstroem)                                                                              | Xylol      | NR   | Prior<br>retreatmen<br>t   | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Radiographs<br>were taken and<br>the teeth were<br>grooved<br>longitudinally<br>and split. Each<br>half of the root<br>and each<br>radiograph were<br>digitized using a<br>scanner. The<br>area of residual<br>debris was<br>measured using<br>computer<br>software.                                                                                                                 | Human central<br>incisors,<br>sectioned<br>vertically | Hand<br>instruments<br>yielded better<br>root canal<br>cleanliness.<br>Hand files<br>performed<br>significantly<br>better than<br>Profile series<br>29 instruments<br>analysis;<br>however,<br>there were no<br>statistical<br>differences in<br>the teeth                                  |

|                                |             |                                                              |                                                                             |                                                                   |                                                                                                                       |            |    |                                              |                                                   |                |                                                                                                                                                                    |                                                          | halves                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|-------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------|----|----------------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Betti et al.<br>2010           | Ex<br>vivo  | Lateral condensation technique (main and secondary GP cones) | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Septodon<br>t)   | Sealed<br>with<br>temporary<br>material<br>(Coltosol,<br>Coltene) | Mechanical<br>instrumentation<br>(GPX<br>instruments) or<br>manual<br>instrumentation<br>(K-type file +<br>Hedstroem) | Xylol      | NR | Prior<br>retreatmen<br>t                     | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Radiographs<br>were taken, and<br>the teeth were<br>grooved<br>longitudinally<br>and split. The<br>area of residual<br>debris was<br>measured using<br>a software. | Human central<br>incisors,<br>sectioned<br>vertically    | analysis.<br>In general, the<br>hand files<br>group<br>performed<br>significantly<br>better, but<br>there were no<br>statistical<br>differences<br>among the<br>GPX groups.<br>The use of<br>xylol as<br>solvent in<br>GPX groups<br>neither<br>shortened the<br>time for filling<br>removal nor<br>improved the<br>filling<br>materials<br>removal.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.              |
| Bhagavalda<br>s et al.<br>2017 | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Mechanical<br>instrumentation<br>(MtwoR or D-<br>RaCe)                                                                | Endosolv R | NR | Before<br>each file                          | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Visual inspection<br>at<br>stereomicroscop<br>e                                                                                                                    | Human first<br>premolars,<br>sectioned<br>vertically     | Root canals<br>retreated with<br>D-RaCe with<br>or without the<br>use of solvent<br>significantly<br>less filling<br>material at all<br>levels<br>compared to<br>Mtwo R with<br>or without the<br>solvent.<br>The use of<br>solvent, had a<br>negative<br>impact on the<br>removal of the<br>filing material,<br>even though<br>statistically not<br>significant.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
| Boariu et al.<br>2015          | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal                         | NR                                                                | Mechanical<br>instrumentation<br>(ProTaper<br>Universal or K3<br>Endo rotary                                          | Eucalyptol | NR | At each<br>third of the<br>working<br>length | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NaOCI<br>5.25% | Radiographic<br>analysis and,<br>after the teeth<br>were<br>longitudinally                                                                                         | Human single<br>rooted teeth,<br>sectioned<br>vertically | K3 and Gates<br>Glidden<br>systems alone<br>or associated<br>with                                                                                                                                                                                                                                                                                                                                                            |

|                         |             |                                                              | sealer<br>(Dentsply)                                                               |                                                                | nickel-titanium<br>system) or<br>manual<br>instrumentation<br>(Gates Glidden +<br>K-type file)                                      |            |       |                                                                                      |                                                   |                | sectioned, each<br>half of the teeth<br>was examined<br>under the dental<br>operating<br>microscope |                                                                   | Eucalyptol<br>demonstrated<br>that there is<br>no significant<br>difference<br>between their<br>efficiency in<br>removal of<br>endodontic<br>materials. The<br>dental<br>microscope<br>analysis<br>showed that<br>the use of<br>organic<br>solvents leads<br>to an increase<br>in the residues<br>of GP and<br>sealer on root<br>canal walls<br>and inside the<br>dentinal<br>tubules.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
|-------------------------|-------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------|---------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bodrumlu<br>et al. 2008 | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)        | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Manual<br>instrumentation<br>(Gates Glidden<br>drill + K-type file<br>+ Hedstroem)                                                  | Chloroform | NR    | After use<br>of Gates<br>glidden<br>drill                                            | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Visual inspection<br>at<br>stereomicroscop<br>e                                                     | Human<br>anterior teeth<br>and molars,<br>sectioned<br>vertically | statistical<br>difference in<br>degree of<br>removal of<br>material<br>among all<br>removal<br>techniques.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                                                                                                                                             |
| Campello et<br>al. 2019 | In<br>vitro | Single cone technique (main cone only)                       | Sealer 26<br>- calcium<br>hydroxide<br>based root<br>canal<br>sealer<br>(Denstply) | NR                                                             | Mechanical<br>instrumentation<br>(Gates Glidden<br>drill + MtwoR +<br>Supplementary<br>cleaning step<br>with XP-endo<br>Finisher R) | Eucalyptol | 3 min | After use<br>of Gates<br>glidden<br>drill and<br>before use<br>XP-endo<br>Finisher R | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%<br>NaOCI. | Micro-CT                                                                                            | Human molars                                                      | The use of a<br>solvent did not<br>improve filling<br>material<br>removal.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                                                                                                                                                                             |
| Colaco et<br>al. 2015   | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Dentsply)               | NR                                                             | Manual<br>instrumentation<br>(H-files)                                                                                              | Xylene     | NR    | Prior<br>retreatmen<br>t                                                             | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR             | Microscope                                                                                          | Single-rooted<br>human teeth,<br>sectioned<br>vertically          | Rotary<br>techniques<br>(control<br>mechanical<br>group)<br>significantly<br>left lesser GP<br>remnants than<br>manual<br>technique                                                                                                                                                                                                                                                                                                               |

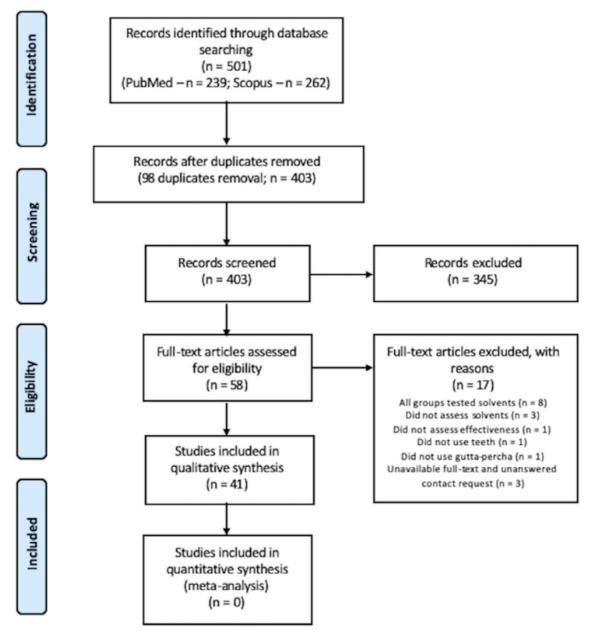
|                             |             |                                                                   |                                                                                                                   |                                                                   |                                                                                                                            |                            |       |                                                                                            |                                                   |    |                                                                                        |                                                                                                      | (experimental<br>group).<br>In manual<br>techniques,<br>Hand files +<br>Xylene<br>significantly<br>left lesser GP<br>remnants than<br>control manual<br>group.                                                                                                                                                                                        |
|-----------------------------|-------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|--------------------------------------------------------------------------------------------|---------------------------------------------------|----|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colombo et<br>al. 2016      | In<br>vitro | Tagger's hybrid technique (Vertically condensed gutta-<br>percha) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Cavit G,<br>3M ESPE)  | Mechanical<br>instrumentation<br>(ProTaper D NiTi<br>rotary<br>instruments or<br>WaveOne)                                  | Chloroform                 | NR    | ProTaper<br>group:<br>after first<br>instrument;<br>WO group:<br>prior<br>retreatmen<br>t. | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR | Operating<br>microscope                                                                | Human<br>premolars,<br>sectioned<br>vertically                                                       | There was no<br>significant<br>difference<br>between<br>groups<br>regarding the<br>amount of<br>residual filling<br>material.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                              |
| Das et al.<br>2017          | In<br>vitro | Lateral condensation technique (main and secondary GP cones)      | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(NR)                   | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment files<br>or Mtwo<br>retreatment files<br>or R-Endo) | RC solve (Prime<br>Dental) | 5 min | Prior<br>retreatmen<br>t                                                                   | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR | Visual inspection<br>at<br>stereomicroscop<br>e                                        | Single-rooted<br>human<br>mandibular<br>premolars,<br>sectioned<br>vertically                        | While<br>ProTaper<br>Universal was<br>found to be<br>equally<br>effective<br>with/without<br>the use of<br>solvent, Mtwo<br>retreatment<br>rotary<br>instrumentatio<br>n system<br>showed<br>increased<br>effectiveness<br>in removal of<br>gutta-percha<br>without the<br>use of solvent.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
| Dadresanfa<br>r et al. 2011 | Ex<br>vivo  | Lateral condensation technique (main and secondary GP cones)      | AH26 -<br>root canal<br>sealer<br>resin-<br>based,<br>non<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Coltosol,<br>Coltene) | Mechanical<br>instrumentation<br>(Mtwo<br>Retreatment or<br>ProTaper)                                                      | Chloroform                 | NR    | Before<br>each<br>instrument                                                               | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR | Visual inspection<br>at<br>stereomicroscop<br>e and scanning<br>electron<br>microscopy | Human,<br>single-<br>canalled distal<br>roots of<br>mandibular<br>molars,<br>sectioned<br>vertically | Mtwo R left<br>fewer filling<br>remnants in all<br>locations of<br>the canal<br>compared to<br>ProTaper<br>Universal,<br>however the<br>solvent<br>adversely<br>effected gutta-<br>percha                                                                                                                                                             |

|                         |             |                                                                   |                                                                                                         |                                                                               |                                                                                                                                                                                                      |            |    |                                                                                                                                       |                                                   |                                 |                                                                                     |                                                               | removal in<br>coronal and<br>middle thirds<br>by Mtwo R.<br>Chloroform as<br>a solvent<br>adversely<br>affects the<br>efficiencies of<br>Mtwo R<br>instruments.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                  |
|-------------------------|-------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ezzie et al.<br>2006    | In<br>vitro | Continuous wave compaction and back-fill technique                | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                             | Glass<br>ionomer<br>restorative<br>material<br>(Fuji IX<br>GP, GC<br>America) | Mechanical<br>instrumentation<br>(ProFile 0.06<br>rotary files)                                                                                                                                      | Chloroform | NR | During the retreatmen t                                                                                                               | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 17%<br>EDTA +<br>5.25%<br>NaOCI | Visual inspection<br>at<br>stereomicroscop<br>e and electron<br>microscopy          | Human,<br>single-canal<br>teeth,<br>sectioned<br>vertically   | The material<br>removal<br>technique was<br>not a<br>significant<br>factor in<br>determining<br>the<br>cleanliness of<br>the canal<br>walls.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                     |
| Fariniuk et<br>al. 2017 | In<br>vitro | Hybrid thermomechanical compaction technique                      | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                             | Glass<br>ionomer<br>restorative<br>cement<br>(Vidrion R,<br>SS White)         | Manual<br>instrumentation<br>(Gates Glidden<br>drill +<br>Hedstroem)                                                                                                                                 | Eucalyptol | NR | Between<br>instrument<br>s                                                                                                            | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR                              | The half of roots<br>were scanned<br>and analysis was<br>perfomed with<br>software. | Human,<br>mandibular<br>premolars,<br>sectioned<br>vertically | Hand files<br>group showed<br>the highest<br>quantity of GP<br>remnant and<br>amount of<br>filling material,<br>being<br>statistically<br>different in all<br>thirds.<br>There was no<br>beneficial use<br>of solvents.                                     |
| Ferreira et<br>al. 2001 | In<br>vitro | Tagger's hybrid technique (Vertically condensed gutta-<br>percha) | Pulp<br>Canal<br>sealer -<br>zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Sybron<br>Endo) | NR                                                                            | Mechanical<br>instrumentation<br>(Gates Glidden<br>drill + ProFiles<br>0.04) or manual<br>instrumentation<br>(Gates Glidden<br>drill + K-<br>Flexofiles or<br>Gates Glidden<br>drill +<br>Hedstroem) | Chloroform | NR | After use<br>of Gates<br>glidden<br>drill (all<br>groups)<br>and during<br>the<br>process<br>once (just<br>K-<br>Flexofiles<br>group) | Absence<br>of solvent<br>(only<br>instrumen<br>t) | Water                           | Microfocal<br>macroradiograph<br>ic technique                                       | Human,<br>molars and<br>premolars with<br>curved roots        | The results<br>indicated that<br>ProFiles or<br>hand files with<br>chloroform<br>produced<br>similarly clean<br>canals. The<br>efficacy of<br>gutta-percha<br>removal with<br>ProFiles is<br>much greater<br>when<br>chloroform is<br>used. There<br>was no |

|                          |             |                                                              |                                                                                                                   |                                                                   |                                                                                                                                                  |                             |    |                                           |                                                   |                                      |                                                                                                       |                                                                                 | statistically<br>significant<br>difference in<br>canal<br>cleanliness<br>between K-<br>Flexofiles and<br>ProFiles.                                                                         |
|--------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----|-------------------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gu et al.<br>2008        | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Mixed<br>instrumentation<br>(Glidden drill +<br>Hedstroem +<br>ProTaper<br>Universal or<br>Gates Glidden<br>drill + Hedstroem<br>+ K-Flexofiles) | Chloroform                  | NR | After use<br>of Gates<br>glidden<br>drill | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 5.25%<br>NaOCI +<br>17%<br>EDTA      | Visual inspection<br>at<br>stereomicroscop<br>e                                                       | Human,<br>maxillary<br>anterior teeth.                                          | The canal wall<br>cleanliness<br>was less<br>satisfactory<br>in groups<br>which<br>chloroform<br>had been<br>used. Thus,<br>there was no<br>beneficial use<br>of solvents.                 |
| Hassanloo<br>et al. 2007 | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Mechanical<br>instrumentation<br>(Gates Glidden<br>drill + K3<br>rotatory)                                                                       | Chloroform                  | NR | After use<br>of Gates<br>glidden<br>drill | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%<br>NaOCl +<br>sterile<br>saline | Dissecting<br>microscope                                                                              | Human,<br>maxillary<br>incisors,<br>sectioned<br>vertically                     | The use of<br>chloroform<br>decreased<br>residue in both<br>groups.                                                                                                                        |
| Horvath et<br>al. 2009   | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Coltosol,<br>Coltene) | Manual<br>instrumentation<br>(Gates Glidden<br>drill+ Hedstroem)                                                                                 | Eucalyptol or<br>Chloroform | NR | During the<br>retreatmen<br>t             | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 17%<br>EDTA +<br>3% NaOCI            | Scanning<br>electron<br>microscopic                                                                   | Human,<br>maxillary<br>incisor and<br>canine,<br>sectioned<br>vertically        | Solvents led to<br>more gutta-<br>percha and<br>sealer<br>remnants on<br>root canal<br>walls and<br>inside dentinal<br>tubules.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
| Hulsmann<br>et al. 1997  | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH26 -<br>root canal<br>sealer<br>resin-<br>based,<br>non<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Manual<br>instrumentation<br>(Hedstroem)                                                                                                         | Chloroform                  | NR | During the retreatmen t                   | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR                                   | The slices were<br>photographed<br>under a light<br>microscope and<br>the specimens<br>were evaluated | Human,<br>single-rooted<br>anterior and<br>premolar,<br>sectioned<br>vertically | The best root<br>canal<br>cleanliness<br>was achieved<br>with Hedstrom<br>files alone.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                          |
| Hulsmann<br>et al. 2004  | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)    | Mechanical<br>instrumentation<br>(FlexMaster or<br>GT Rotary or<br>ProTaper) or<br>manual<br>instrumentation<br>(Hedstroem)                      | Eucalyptol                  | NR | During the<br>retreatmen<br>t             | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR                                   | The slices were<br>photographed<br>under a light<br>microscope and<br>the specimens<br>were evaluated | Human,<br>single-rooted<br>anterior teeth,<br>sectioned<br>vertically           | The use of<br>eucalyptol as<br>a solvent<br>shortened the<br>time to reach<br>the working<br>length and to<br>remove the<br>gutta-percha,<br>but this was                                  |

| Jain et al.<br>2015     | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | Sealed<br>with<br>temporary<br>material<br>(Cavity, 3M<br>ESPE) | Manual<br>instrumentation<br>(Gates Glidden<br>drills +<br>Hedstroem + H<br>files)                                                     | Chloroform | 15 sec                                               | After use<br>of Gates<br>glidden<br>drill                     | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 3% NaOCI      | Scanning<br>electron<br>microscopic                                                                                                                                         | Human,<br>mandibular<br>premolar,<br>sectioned<br>vertically                 | not significant.<br>Nevertheless,<br>completely<br>cleaned root<br>canal walls<br>could not be<br>achieved with<br>any of the<br>techniques<br>under<br>investigation.<br>The<br>chloroform<br>should be<br>utilized only<br>when<br>mechanical<br>methods fail to<br>achieve<br>retrieval of<br>gutta percha<br>in retreatment<br>cases.                                                                                                                                                    |
|-------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kfir et al.<br>2012     | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH26 -<br>root canal<br>sealer<br>resin-<br>based,<br>non<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)  | Mechanical<br>instrumentation<br>(SafeSider or<br>ProTaper<br>Universal<br>Retreatment) or<br>manual<br>instrumentation<br>(Hedstroem) | Chloroform | NR                                                   | Prior<br>retreatmen<br>t                                      | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%<br>NaOCI | The roots were<br>assessed with<br>radiographic<br>evaluation using<br>a software and<br>the half of roots<br>were evaluated<br>using endodontic<br>operating<br>microscope | Human,<br>maxillary<br>anterior<br>single-rooted,<br>sectioned<br>vertically | Radiographic<br>evaluation of<br>root filling<br>material left in<br>the canal<br>revealed no<br>difference<br>between the<br>groups.<br>Microscopic<br>evaluation<br>revealed<br>substantial<br>amounts of<br>root filling<br>residues in all<br>groups with no<br>difference<br>amongst<br>them. The use<br>of chloroform<br>in combination<br>with<br>mechanized<br>instruments<br>failed to<br>reduce<br>retreatment<br>time.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
| Khalilah et<br>al. 2013 | In<br>vitro | Lateral condensation technique (main and secondary GP cones) | AH26 -<br>root canal<br>sealer<br>resin-<br>based,                                                                | Sealed<br>with<br>temporary<br>material                         | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment) or                                                             | Chloroform | 2 min (H<br>file<br>group) or<br>until<br>soften the | After use<br>of Gates<br>glidden<br>drill (group<br>H Files); | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%<br>NaOCI | Visual inspection<br>at<br>stereomicroscop<br>e                                                                                                                             | Human,<br>mandibular<br>premolars with<br>one canal,                         | In all groups,<br>no significant<br>difference was<br>found in<br>remaining                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                        |             |                                                                                                 | non<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply)                                | (Coltosol,<br>Coltene)                                                | manual<br>instrumentation<br>(Gates glidden<br>drill + H files)                                                                                    |                            | gutta<br>(PTUR<br>group) | after the<br>use of first<br>PTU file<br>and<br>refreshed<br>between<br>files (1x).                                |                                                   |                    |                                                 | sectioned<br>vertically                                                  | gutta-percha<br>and sealer<br>with or without<br>using<br>chloroform,<br>but chloroform<br>shortened the<br>time of<br>retreatment.                                                                                                                                                                                                                                                    |
|------------------------|-------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|-------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kumar et<br>al. 2012   | In<br>vitro | Lateral condensation technique (main and secondary GP cones)                                    | Zinc oxide<br>eugenol-<br>based root<br>canal<br>sealer<br>(NR)                            | NR                                                                    | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment) or<br>manual<br>instrumentation<br>(Gates glidden<br>drill +<br>Hedstroem) | RC Solve (Prime<br>Dental) | NR                       | After use<br>of Gates<br>glidden<br>drill (group<br>Hedstroem<br>Files); after<br>the use of<br>first PTUR<br>file | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR                 | Visual inspection<br>at<br>stereomicroscop<br>e | Human,<br>mandibular<br>premolars,<br>sectioned<br>vertically            | There was no<br>statistical<br>significant<br>differences<br>regarding the<br>amount of<br>filling<br>remnants<br>between<br>groups.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                                                        |
| Latheef et<br>al. 2016 | In<br>vitro | Lateral condensation technique (main and secondary GP<br>cones)                                 | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                | Sealed<br>with<br>temporary<br>material<br>(NR)                       | Mechanical<br>instrumentation<br>(ProTaper<br>Retreatment +<br>manual irrigation<br>or ProTaper<br>Universal<br>Retreatment +<br>PUI)              | Endosolv R<br>(Septodont)  | NR                       | Before<br>PTUR                                                                                                     | Absence<br>of solvent<br>(only<br>instrumen<br>t) | Saline<br>solution | Scanning<br>electron<br>microscopic             | Maxillary<br>molars 1st<br>and 2nd<br>molars,<br>sectioned<br>vertically | Endodontic<br>retreatment<br>without using<br>any solvent<br>showed more<br>cleanliness of<br>dentinal<br>tubules when<br>compared with<br>the groups<br>using<br>Endosolv R<br>solvent. The<br>use of<br>Endosolv R<br>led to more<br>gutta-percha<br>and sealer on<br>root canal<br>walls and<br>inside dentinal<br>tubules. Thus,<br>there was no<br>beneficial use<br>of solvents. |
| Ma et al.<br>2012      | In<br>vitro | Continuous wave of condensation or Lateral condensation technique (main and secondary GP cones) | iRoot SP -<br>bioceramic<br>root canal<br>sealer<br>(Innovativ<br>e<br>BioCerami<br>x Inc) | Sealed<br>with<br>temporary<br>material<br>(Caviton,<br>GC<br>Europe) | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment)                                                                            | Chloroform                 | NR                       | Prior<br>retreatmen<br>t                                                                                           | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 5% NaOCI           | Micro-CT, after<br>and before de<br>retreatment | Human,<br>mandibular<br>incisor teeth                                    | It was<br>impossible to<br>remove root<br>canal filling<br>material<br>completely in<br>the oval<br>canals<br>regardless of<br>retreatment by<br>using PTUR<br>with or without<br>a solvent.                                                                                                                                                                                           |


|                                  |             |                                                                   |                                                                                    |                                                                    |                                                                                                                                                                                                            |                                  |       |                                              |                                                   |    |                                                 |                                                                       | Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                                                                                                                                                                           |
|----------------------------------|-------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|----------------------------------------------|---------------------------------------------------|----|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mittal et al.<br>2014            | In<br>vitro | NR                                                                | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(NR)                     | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)     | Mechanical<br>instrumentation<br>(Gates glidden<br>drill + ProTaper<br>Universal<br>Retreatment or<br>Gates glidden<br>drill + Mtwo) or<br>manual<br>instrumentation<br>(Gates glidden<br>drill + H file); | Tetrachloroethyle<br>ne (Amdent) | 1 min | After use<br>of Gates<br>glidden<br>drill    | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR | CT scan, after<br>and before de<br>retreatment  | Human,<br>mandibular<br>molar                                         | None of the<br>technique was<br>100% effective<br>in removing<br>the filling<br>materials, but<br>the ProTaper<br>retreatment<br>system with<br>solvent was<br>better.                                                                                                                                                                                            |
| Muller et al.<br>2013            | In<br>vitro | Lateral condensation technique (main and secondary GP<br>cones)   | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)        | Glass<br>ionomer<br>restorative<br>cement<br>(Vermeer,<br>3M ESPE) | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment +<br>PUI with solvent)                                                                                                              | Endosolv R<br>(Sepodont)         | NR    | At the end<br>with PUI<br>(solvent or<br>DW) | Absence<br>of solvent<br>(only<br>instrumen<br>t) | DW | Scanning<br>electron<br>microscopic             | Human,<br>premolar<br>teeth,<br>sectioned<br>vertically               | PUI with<br>Endosolv R or<br>distilled water<br>was not<br>effective in<br>filling debris<br>removal from<br>root canal<br>walls.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                                                                                                                                      |
| Rached-<br>Junior et al.<br>2014 | In<br>vitro | Tagger's hybrid technique (Vertically condensed gutta-<br>percha) | Endofill -<br>zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Denstply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE)     | Mechanical<br>instrumentation<br>(ProTaper<br>Retreatment or<br>ultrasound)                                                                                                                                | Xylol                            | NR    | Between<br>instrument<br>s                   | Absence<br>of solvent<br>(only<br>instrumen<br>t) | DW | Confocal<br>microscopy                          | Human, root<br>canals of<br>incisors                                  | The use of<br>ultrasound/xyl<br>ol under an<br>operating<br>microscope<br>(OM) provided<br>better results.<br>The use of<br>xylol was<br>associated<br>with greater<br>removal of<br>filling material<br>in both<br>ProTaper<br>retreatment<br>and<br>ultrasound<br>groups,<br>regardless of<br>the vision<br>(directly or<br>through<br>surgical<br>microscope). |
| Reddy et al.<br>2013             | In<br>vitro | Lateral condensation technique (main and secondary GP cones)      | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)        | NR                                                                 | Mechanical<br>instrumentation<br>(ProTaper<br>Retreatment) or<br>manual<br>instrumentation<br>(Hedstroem)                                                                                                  | Xylene                           | NR    | NR                                           | Absence<br>of solvent<br>(only<br>instrumen<br>t) | NR | Visual inspection<br>at<br>stereomicroscop<br>e | Human, single<br>rooted anterior<br>teeth,<br>sectioned<br>vertically | The use of<br>xylene<br>resulted in<br>better root<br>canal<br>cleanliness,<br>first with                                                                                                                                                                                                                                                                         |

|                          |             |                                                                   |                                                                                                                   |                                                                |                                                                                                                                               |                             |       |                                                                                                                    |                                                   |                                                                                                   |                                                 |                                                                       | mechanical<br>instrumentatio<br>n, after using<br>manual<br>instrumentatio<br>n.                                                                                                                                                                                                                    |
|--------------------------|-------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sae-Lim et<br>al. 2000   | In<br>vitro | Lateral condensation technique (main and secondary GP cones)      | Roth's<br>Sealer -<br>zinc oxide<br>eugenol<br>based root<br>canal<br>sealer                                      | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Mechanical<br>instrumentation<br>(Profile NiTi<br>rotatory) or<br>manual<br>instrumentation<br>(Hedstroem + K-<br>Flex)                       | Chloroform                  | NR    | Prior<br>retreatmen<br>t                                                                                           | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 1% NaOCI                                                                                          | Visual inspection<br>at light<br>microscopes    | Human,<br>single-rooted<br>anterior teeth,<br>sectioned<br>vertically | There was no<br>beneficial use<br>of solvents.                                                                                                                                                                                                                                                      |
| Saglam et<br>al. 2014    | In<br>vitro | Lateral condensation technique (main and secondary GP cones)      | AH26 -<br>root canal<br>sealer<br>resin-<br>based,<br>non<br>acrylic,<br>eugenol-<br>free<br>cement<br>(Dentsply) | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment)                                                                       | Chloroform or<br>Endosolv R | 2 min | After the<br>first PTUR<br>file                                                                                    | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 1% NaOCI                                                                                          | Micro-CT, after<br>and before de<br>retreatment | Human, molar<br>teeth                                                 | The use of<br>chloroform or<br>Endosolv R<br>did not result<br>in less root<br>canal filling<br>material<br>remnants<br>when<br>compared with<br>retreatment<br>without<br>solvent.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                                      |
| Salgado et<br>al. 2019   | In<br>vitro | Tagger's hybrid technique (Vertically condensed gutta-<br>percha) | AH Plus -<br>epoxy<br>resin-<br>based root<br>canal<br>sealer<br>(Dentsply)                                       | NR                                                             | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment)                                                                       | Orange Oil                  | 2 min | Prior<br>retreatmen<br>t (1min)<br>and after<br>the first file<br>(1min)                                           | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2% CHX<br>gel with an<br>orange oil<br>solvent or<br>5% NaOCI<br>with an<br>orange oil<br>solvent | Scanning<br>electron<br>microscopic             | Human,<br>maxillary<br>premolars,<br>sectioned<br>vertically          | Groups in<br>which a<br>solvent was<br>used showed<br>a less<br>effective<br>cleaning<br>ability. The<br>use of orange<br>oil with NaOCI<br>or CHX does<br>not improve<br>the removal of<br>residual root<br>canal filling<br>materials.<br>Thus, there<br>was no<br>beneficial use<br>of solvents. |
| Takahashi<br>et al. 2009 | In<br>vitro | Thermomechanical compaction with a hybrid technique               | Zinc oxide<br>eugenol<br>based root<br>canal<br>sealer<br>(Dentsply)                                              | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Mechanical<br>instrumentation<br>(ProTaper<br>Universal<br>Retreatment) or<br>manual<br>instrumentation<br>(Gates glidden<br>drill + K-files) | Chloroform                  | NR    | After use<br>of Gates<br>glidden<br>drill (K files<br>group);<br>after using<br>first PTUR<br>file (PTUR<br>group) | Absence<br>of solvent<br>(only<br>instrumen<br>t) | 2.5%NaO<br>Cl                                                                                     | Operating<br>microscope                         | Human,<br>maxillary<br>anterior teeth,<br>sectioned<br>vertically     | All of the<br>techniques<br>proved helpful<br>for the<br>removal of<br>endodontic<br>filling material,<br>and they were<br>similar in<br>material                                                                                                                                                   |

|                        |             |                                                                    |                                                                              |                                                                |                                                                                     |                      |                                                 |                                                                                                                                                        |                                                    |                    |                                                                                                                                  |                                                                                     | remaining<br>after<br>retreatment,<br>but the<br>ProTaper<br>Universal<br>rotary<br>retreatment<br>system<br>without<br>chloroform<br>was faster.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                    |
|------------------------|-------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vidučić et<br>al. 2003 | In<br>vitro | Lateral condensation technique (main and secondary GP cones)       | Diaket -<br>polyketone<br>-based<br>root canal<br>sealer (3M<br>Espe)        | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Nd:YAG laser<br>with Eucalyptol<br>or Nd:YAG laser<br>with<br>dimethylformami<br>de | Eucalyptol or<br>DMF | 18 sec for<br>eucalypto<br>I; 16 sec<br>for DMF | Prior<br>retreatmen<br>t                                                                                                                               | Absence<br>of solvent<br>(only<br>Nd:YAG<br>laser) | NR                 | The specimens<br>were examined<br>under binocular<br>loupe and with<br>photographs with<br>the aid of a<br>computer<br>program   | Human,<br>permanent<br>maxillary<br>central<br>incisors,<br>sectioned<br>vertically | The Nd:YAG<br>laser is<br>capable of<br>softening<br>gutta-percha<br>in vitro, but the<br>addition of<br>solvents did<br>not improve its<br>removal.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                 |
| Wilcox<br>1993         | In<br>vitro | Lateral condensation technique (main and secondary GP cones)       | Roth's<br>Sealer -<br>zinc oxide<br>eugenol<br>based root<br>canal<br>sealer | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Manual<br>instrumentation<br>(Hand file size<br>20)                                 | Chloroform           | NR                                              | During the<br>retreatmen<br>t                                                                                                                          | Absence<br>of solvent<br>(only<br>instrumen<br>t)  | NR                 | Photographed<br>and projected<br>onto white paper<br>and the<br>remaining gutta-<br>percha and<br>canal outlines<br>were traced. | Human, single<br>canal teeth,<br>sectioned<br>vertically                            | The cleanest<br>canals were<br>those treated<br>without<br>chloroform<br>and in which<br>the carrier was<br>easy to<br>remove. The<br>use of solvent<br>should be<br>considered<br>only if GP is<br>removed with<br>difficulty. |
| Wolcott et<br>al. 1999 | In<br>vitro | NR<br>s: Gutta-percha (GP); Not reported (NR); Sodium hypochlorite | Thermase<br>al - epoxy-<br>based<br>resin<br>sealer<br>(Dentsply)            | Sealed<br>with<br>temporary<br>material<br>(Cavit, 3M<br>ESPE) | Manual<br>instrumentation<br>(NiTi hand files)<br>raphy scan (CT scan               | Chloroform           | NR                                              | Prior<br>retreatmen<br>t and was<br>replenishe<br>d as<br>needed<br>until the<br>files<br>penetrated<br>to within 5<br>mm of the<br>working<br>length. | Absence<br>of solvent<br>(only<br>instrumen<br>t)  | NR<br>hv (Micro-CT | Visual inspection<br>at<br>stereomicroscop<br>e                                                                                  | Human,<br>mandibular<br>premolars,<br>sectioned<br>horizontally                     | The difference<br>between the<br>two groups in<br>the amount of<br>filling material<br>removed was<br>not significant.<br>Thus, there<br>was no<br>beneficial use<br>of solvents.                                               |

# **Figure Captions**





**Figure 2** – Word cloud representing the solvents used. The more a substance was used, the bigger it appears in the word cloud.

Xylol TeArachloroeAhylene EucalypAol Xylene OrangeOil EndosolvR Ethyl Ether-chloroform Mixture

# 5. ARTIGO 3

# Title page

# Effect of root canal irrigants on push-out bond strength of endodontic sealers: a systematic review

Lara Dotto<sup>a</sup>, Gabriel Kalil Rocha Pereira<sup>b</sup>, Alvin Tomm<sup>a</sup>, Ataís Bacchi<sup>a</sup>, Rafael Sarkis Onofre<sup>a</sup>

<sup>a</sup>Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil <sup>b</sup>MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil

\*Corresponding author: D.D.S, M.S.D., Ph.D. Rafael Sarkis-Onofre, Associate Professor, Meridional Faculty (IMED), MSciD Post-Graduate Program in Dentistry. R. Senador Pinheiro, 304, 99070-220, Passo Fundo, Rio Grande do Sul, Brazil. E-mail: <u>rafaelonofre@gmail.com</u>

Artigo publicado no periódico Journal of Adhesion Science and Technology e formatado segundo suas normas.

#### ABSTRACT

This study aimed to assess root canal irrigants' effect on the bond strength between endodontic sealers and root canal dentin, through a systematic review. The study protocol is available online (https://osf.io/x9tw4/). We selected studies considering the effects of root canal irrigants on sealer bond strength and comparing the influence of such agents used during the endodontic treatment and/or at final irrigation. The search was performed in the PubMed and Scopus databases. The screening was performed by two independent researchers. Data were extracted by one researcher and verified by another. A descriptive analysis was performed. A total of 39 studies were included. The majority demonstrated that using some irrigant substances such as ethylenediaminetetraacetic acid, maleic acid, phosphoric acid, and peracetic acid could improve, or at least not damage, the pushout bond strength. In opposition, a decrease in this outcome was observed when using only sodium hypochlorite or saline solution. The use of irrigant substances capable of demineralizing the surface of root canal dentin and/or removing the remnant smear layer seems to enhance, or, at least, does not compromise the push-out bond strength of the sealer to root dentin.

#### **KEYWORDS**

Adhesion; AHPlus; bioceramic; gutta-percha; root canal solutions

#### 1. Introduction

During endodontic treatment, it is necessary to prepare the root canals for adequate cleanness and debridement [1]. This process can result in the presence of a smear layer, debris, and necrotic tissues [1]. Thus, it is crucial to use irrigant solutions to remove such undesirable remnants. For which, there are different solutions, presenting distinct compositions and concentrations. Alternative presence of surfactants and association with chelating agents have also been tested [1].

Some studies have already investigated the effect of these solutions on the mechanical properties of endodontically treated teeth. They stated that factors such as solution concentration, exposure time, and its association with other agents (such as surfactants or chelating agents) might be capable of modifying the root dentin surface, promoting structural alterations (decrease the Ca/P ratio), altering surface roughness and hardness, among other characteristics [1]. Based on this, it is logical to assume that any dentin alteration promoted by using different irrigant solutions could also influence its interaction with the sealer used during root canal obturation. This might interfere in the adhesion (bond strength) between such substrates and also compromise the obtained apical sealing, which could be a predisposing factor to decrease the treatment longevity [2].

Push-out bond strength tests may determine the extent of resistance to a filling material's dislodgement applied to the treated root canal dentine. Many studies have been carried out using such test to assess the effect of different irrigant solutions on the push-out bond strength of different endodontic sealers [3–8]. However, there is no consensus in the literature about the influence of different solutions on the push-out bond strength of the different endodontic sealers tested [9]. Thus, this study aimed to assess the effects of root canal irrigants on the push-out bond strength of endodontic sealers used to obturate endodontic treated teeth, through a systematic review.

## 2. Materials and methods

This study was not registered in a registry database (e.g. PROSPERO) due to the inclusion criteria' nature (in vitro studies). However, the study protocol is available online (<u>https://osf.io/x9tw4/</u>). The reporting of this study is based on

the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [10].

## 2.1. Inclusion criteria

We selected studies in dentistry written in the English language which considered the effects of root canal irrigants on push-out bond strength of endodontic sealers and compared the influence of such agents during the endodontic treatment and/or in final irrigation. Studies were included regardless if chelating agents or surfactants were used, irrespective of the teeth type (human or animal), regardless if the use of irrigants were associated with passive or active methods, and regardless of the instrumentation type or obturation method. The outcome (bond strength) should be measured by the pushout test. Only in vitro studies were included concerning the adopted study designs. Study groups testing other root filling materials (not gutta-percha) were not considered.

# 2.2. Search

The search was performed in two databases: MEDLINE (PubMed) and Scopus, limited to articles written in the English language and without time restriction. The search strategy is presented in Table 1 and was based on PubMed Mesh terms and specific terms of Scopus. The last search was conducted in February 2020.

#### 2.3. Screening

The search was initially undertaken using the EndNote program (EndNote X9, Thomson Reuters, New York, NY). Two researchers identified articles by first analyzing titles and abstracts for relevance and the eligibility criteria' presence. Retrieved records were classified as include, exclude, or uncertain. The full-text articles of the included and uncertain documents were selected for further eligibility screening by the same two reviewers. Discrepancies in the screening of titles/abstracts and full-text articles were resolved through a discussion. In case of disagreement, the opinion of a third reviewer was consulted.

# 2.4. Data extraction

We created a form using the Excel program, which three reviewers tested to reach consensus for the data collections. Then, one of the reviewers extracted the data, and another checked it. The following data were collected: author, year, irrigant solution protocol used during and/or in the final endodontic treatment (including concentration, the amount used, and whether surfactants were used with irrigant solutions); chelating agents used during the treatment; method/technique used for instrumentation during retreatment (manual or rotary); method/technique used for obturation; sealer used for obturation (calcium silicate-based, epoxy resin-based, silicone-based and methacrylate-based sealers); control groups used; type of the teeth (human or animal); the time between obturation and push-out test; and the main study findings with a focus on the push-out test results.

#### 2.5. Risk of bias

The risk of bias of included studies was assessed based on previous studies [11,12]. The following parameters were considered: teeth randomization, materials used according to the manufacturer's instruction, permanent storage of teeth in hydric solution, the blindness of outcome assessment. The parameters used were discussed by all researchers involved; the judgment was carried out by one researcher and verified by another. Assessment of risk of bias was conducted using Review Manager 5.3 software.

#### 2.6. Data analysis

We performed a descriptive analysis considering the characteristics of included studies and identifying the effects of root canal irrigants on push-out bond strength of endodontic sealers contemplating different substances used.

# 3. Results

#### 3.1. Search

Figure 1 shows a flow chart of the study selection. A total of 39 studies fulfilled the selection criteria and were included in the qualitative analysis (See supplemental material).

#### **3.2. Characteristics of included studies**

The ProTaper rotary system (Dentsply Maillefer, Ballaigues, Switzerland) was the method most used for instrumentation of specimens. The most tested irrigant solution was sodium hypochlorite (NaOCI), regardless of its concentration. However, when considering a specific substance with a standardized concentration, the substance most tested was 17% ethylenediaminetetraacetic acid (EDTA). The most used type of sealer was resinbased (the majority used the AH Plus – Dentsply DeTrey, Konstaz, Germany), whereas the single-cone technique was the most used method for obturation. The type of teeth most evaluated was human.

#### 3.3. Descriptive analysis

Table 1 shows the characteristics of the included studies and the results related to the influence of irrigant solutions tested on push-out bond strength (POBS) of endodontic sealers. Most studies (21) [3–7,13–27], regardless of the irrigant solutions tested, generally found that at least one substance positively affected (increased) the POBS.

#### 3.3.1. Sodium hypochlorite

One study demonstrated that NaOCI as the final irrigant decreases the POBS of Tricalcium silicate-based sealer (Endosequence BC sealer), whereas cetrimide-cetyl-trimethyl- ammonium-bromide (QMix) provided the highest POBS [7]. Other studies also found that NaOCI significantly decreased the resin-based sealer's bond strength (AH Plus) to dentin [6,28].

Association and variations between 5.25% NaOCI and 2% CHX were studied by Gupta et al. [29]. In that study, the authors concluded that the highest bond strength is noted in the resin-based sealer group without precipitate, i.e. the group irrigated with saline solution plus 2% CHX without association with NaOCI. Another association tested was 2.6% NaOCI plus a mixture of tetracycline, citric acid, and detergent (MTAD), resulting in significantly lower mean POBS for a resin-based sealer [19].

## 3.3.2. Chlorhexidine

The use of 2% CHX as the final rinse, following 17% EDTA, improved the POBS of GP and the resin-based sealer [17]. When 2% CHX gel was used during

chemomechanical preparation, 17% EDTA enabled better bond strength values [14]. However, when the bond strength of GP and a resin-based sealer were tested after using an MTAD or MTAD b 2%CHX, the resin-based sealer was adversely affected by these substances [30]. Still, Razmi et al. [31] tested the effect of the 2% CHX and 5.25% NaOCI on POBS, resin-based sealer, and Endosequence BC sealer and concluded that although the bond strength of the resin-based sealer was not affected by the irrigant type, CHX reduced the bond strength of bioceramic sealer with calcium silicate-based composition [31].

#### 3.3.3. Peracetic acid

The influence of the Peracetic Acid (PAA) on POBS was controversial. Gaddala et al. [5] assessed the use of this substance as a final irrigant compared with Smear Clear (irrigant solution containing EDTA, detergent, and cetrimide) and found that the PAA improved the bond strength of root canal sealers compared to the control group (distilled water), but was not statistically significant compared to Smear Clear. Keine et al. [26] found no difference between the use of PAA and NaOCI-EDTA-NaOCI groups, but the root canal sealer showed higher values for bond strength in both groups than in the groups treated with NaOCI and saline groups.

## 3.3.4. Chelating agents

In relation to EDTA, the use of this substance after irrigant solutions (like 2.5% NaOCI) increased the POBS [6,13,14,17,18,20,26,27] as well as the EDTA plus Cetavlon (EDTAC) [22] or REDTA (17% EDTA þ 0.84 g cetyltrimethylammonium bromide) and EDTA-T (17% EDTA þ 1.25% sodium lauryl ether sulfate) [24].

On the other hand, Mozayeni et al. [16] found that the mean bond strength of resin-based sealer (AH26 - Dentsply Caulk, Germany) to dentin walls was significantly greater using MTAD compared with a combination of EDTA and NaOCI or saline groups. The same was concluded by Uzunoglu et al. [21], showing that the samples irrigated with QMix had higher POBS values than the samples irrigated with 17% EDTA. Similarly, other authors concluded that EDTA's use reduces the POBS on resin-based sealers [32] or on calcium silicatebased sealers [25]. The use of 7% maleic acid [19] and 37% phosphoric acid [14] increases the POBS on resin-based sealer when used after NaOCI.

# 3.3.5. Surfactant agents

Two studies [4,23] assessed the effect of surfactants on POBS of resinbased sealer. Fahmy et al. [4] compared the Tween 80 (T80) surfactant with different concentrations (1%, 0.9%, 0.6%) with 17% EDTA and 2.5% NaOCI with different substances combinations. The addition of T80 to the demineralizing irrigants improved the bond strength value of GP and resin-based sealer on dentin, whereas its addition to NaOCI demonstrated lower results. Guneser et al. [23] tested 5% NaOCI with various surfactants: 0.1% Benzalkonium chloride (BAK), 0.1% Tween 80; 0.1% Triton X-100 (TRX), and concluded that the POBS in the NaOCIbTRX group was higher than in the control group (NaOCI without surfactants), NaOCIbBAK, and NaOCIbT80 groups, whereas the bond strength of the last two groups was similar to the control group.

#### **3.3.6.** Natural irrigants

The effect of proanthocyanidin (from grape seed extract capsules) and bamboo salt on the POBS of a resin-based sealer was tested after 5.25% NaOCI [33], and it was observed that the use of these natural substances eliminated the harmful effect on bond strength generated by NaOCI. Trindade et al. [8] concluded that the 2% CHX or 15% proanthocyanidin enhanced long-term POBS of methacrylate resin-based sealers (EndoREZ - Ultradent, South Jordan, USA).

#### 3.4. Risk of bias

Figure 2 presents the risk of bias judgment. The majority of studies were judged as 'low risk' considering the domains 'teeth randomization' and 'storage of teeth permanently in hydric solution'. All studies were judged as 'unclear' considering the blindness of outcome assessment. The majority of studies were judged as 'unclear' related to the 'materials used according to the manufacturer's instruction' domain.

## 4. Discussion

This systematic review provides the first synthesis of information considering root canal irrigants' effect on push-out bond strength (POBS) of different endodontic sealers to root canal dentin. Our results showed that chelating agents or other substances with similar capacity to remove the smear layer after using irrigant solutions seem to increase the POBS of the endodontic sealer.

The use of substances that promote smear layer removal seemed to increase the POBS, regardless of the type of endodontic sealer used and the irrigant solution used before applying the demineralizing agent and. These findings could be related to the alteration on the treated dentin surface since EDTA, maleic acid or phosphoric acid (chelating agents), and peracetic acid (used as the final rinse solution) are used for removing the smear layer and consequently decalcification of the root canal surface [13,14,19,26]. These properties of the cited substances may improve the contact between the endodontic sealer and dentin, facilitating molecular attraction and adhesion or chemical penetration for the micromechanical interlocking of the sealer [30].

Furthermore, the addition of surfactants to irrigants may reduce fluid tension and enhance these substances' wettability properties, influencing the adaptation of sealers and root canal dentin [4]. For this reason, Fahmy et al. [4] showed that T80 (Polysorbate 80) addition to the demineralizing irrigants improved the POBS using a resin-based sealer. Guneser et al. [23] found that the addition of Benzalkonium chloride (BAK) or T80 to NaOCI solution did not cause a POBS reduction, and irrigation with NaOCI plus Triton X-100 (TRX) increased the POBS values, most likely because the TRX has a higher surface tension-reduction ability than the other two surfactants.

NaOCI was the most frequently used substance in tests (disregarding different concentrations), probably because it is the most used irrigant solution by dentists [7]. The importance of NaOCI especially consists in the broad spectrum of antibacterial activity, but in relation to POBS, the use of NaOCI as a unique irrigant used during the endodontic treatment showed to decrease the push-out, regardless of the sealer used [6,7,19,28,29,33].

Additionally, POBS between resin-based sealers and root canal dentin was adversely affected by using 2% CHX, particularly after MTAD31, or by bioceramic sealer with calcium silicate-based composition [31]. However, the POBS increased when EDTA was used after CHX [14,17]. The use of CHX plus MTAD or only MTAD adversely affected the POBS on a hydrophobic resin-based sealer. A possible explanation is that MTAD contains T80 detergent, which could increase dentin permeability, as well as penetration and diffusion into the dentinal tissues (and the intertubular fluid), affecting the interaction of hydrophobic sealer to the surface of root canal dentin [30].

Resin-based sealers were the most tested, especially AH Plus (Dentsply DeTrey, Konstaz, Germany), probably because this root canal sealer presents satisfactory physicochemical properties, long-term dimensional stability, low solubility and disintegration, good apical sealability and adhesion [8,18,31]. In relation to the effect of different irrigant solutions on POBS with this sealer, most studies showed that irrigants could not cause damage to POBS, and demineralizing irrigants such as peracetic acid or chelating agents could improve such outcomes [5,6,13,14,17–20,22,24,26,27]. This fact corroborates a previous study that showed that the epoxy resin-based sealers present good retention to root canal dentin with higher POBS values in relation to other endodontic sealers.

This systematic review presents some limitations. First, data extraction was not performed duplicated; however, one author reviewed any possible data inconsistencies. Second, the studies assessed the effect of different irrigant solutions on different endodontic sealers and the methods/techniques for instrumentation and obturations. All these factors lead to heterogeneity, which limits the exact comparison among studies. Third, a high proportion of included studies presented an 'unclear' risk of bias considering the domains 'blind outcome assessment' and 'materials used according to the manufacturer's instruction', which could be related to the poor reporting quality of some of the included studies.

Finally, our results are clinically relevant since the use of demineralizing agents and substances capable of removing the smear layer were shown to improve or at least not to cause damage to the bond strength between the endodontic sealer and root dentin, potentially providing better longevity and prognosis to endodontic treatment. In using these substances, clinicians will be combining the excellent effect of cleanness and disinfection without harming the bond strength of the sealer to the surface of the root canal dentin. In relation to new endodontic sealers such as bioceramics, few studies tested the effect of

irrigant solutions on POBS; therefore, based on this review, more studies considering such systems are still encouraged.

# 5. Conclusion

Although the limitations of included studies, the use of irrigant substances capable of demineralizing the surface of root canal dentin and/or removing the remnant smear layer seem to enhance push-out bond strength, or at least does not reduce it.

# References

[1] Dotto L, Sarkis Onofre R, Bacchi A, et al. Effect of root canal irrigants on the mechanical properties of endodontically treated teeth: a scoping review. J Endod. 2020;46(5): 596.e3–604.e3.

[2] Neelakantan P, Subbarao C, Subbarao CV, et al. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J. 2011;44(6):491–498.

[3] Ertas H, Sagsen B. Comparison of the effect of MTAD and conventional irrigation agents on apical leakage and push-out bond strength of root canal filling. Scanning. 2015;37(6):393–398.

[4] Fahmy SH, El Gendy AA, El Ashry SH. Dentin wettability enhancement for three irrigating solutions and their effect on push out bond strength of gutta percha/AH Plus. J Clin Exp Dent. 2015;7(2):e237–e242.

[5] Gaddala N, Veeramachineni C, Tummala M. Effect of peracetic acid as A final rinse on push out bond strength of root canal sealers to root dentin. J Clin Diagn Res. 2015; 9(5):ZC75–ZC77.

[6] Pheenithicharoenkul S, Panichuttra A. Epigallocatechin-3-gallate increased the push out bond strength of an epoxy resin sealer to root dentin. Dent Mater J. 2016;35(6): 888–892.

[7] Gundogar M, Sezgin GP, Erkan E, et al. The influence of the irrigant QMix on the push-out bond strength of a bioceramic endodontic sealer. Eur Oral Res. 2018;52(2): 64–68.

[8] Trindade TF, Barbosa AFS, Castro-Raucci LMS, et al. Chlorhexidine and proanthocyanidin enhance the long-term bond strength of resin-based endodontic sealer. Braz Oral Res. 2018;24(32):e44.

[9] Del Fabbro M, Corbella S, Sequeira-Byron P, et al. Endodontic procedures for retreatment of periapical lesions. Cochrane Database Syst Rev. 2016;10(10):CD005511.

[10] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–e34.

[11] Sarkis-Onofre R, Skupien JA, Cenci MS, et al. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper Dent. 2014;39(1):E31–E44.
[12] Schestatsky R, Dartora G, Felberg R, et al. Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. J Mech Behav Biomed Mater. 2019;90:306–312.

[13] Shokouhinejad N, Sharifian MR, Jafari M, et al. Push-out bond strength of Resilon/Epiphany self-etch and gutta-percha/AH26 after different irrigation protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
2010;110(5):e88–e92.

[14] Prado M, Simao RA, Gomes BP. Effect of different irrigation protocols on resin sealer bond strength to dentin. J Endod. 2013;39(5):689–692.

[15] Aranda-Garcia AJ, Kuga MC, Vitorino KR, et al. Effect of the root canal final rinse protocols on the debris and smear layer removal and on the push-out strength of an epoxy-based sealer. Microsc Res Tech. 2013;76(5):533–537.
[16] Mozayeni MA, Zadeh YM, Paymanpour P, et al. Evaluation of push-out bond strength of AH26 sealer using MTAD and combination of NaOCI and EDTA as final irrigation. Dent Res J (Isfahan). 2013;10(3):359–363.

[17] Dinesh K, Murthy BV, Narayana IH, et al. The effect of 2% chlorhexidine on the bond strength of two different obturating materials. J Contemp Dent Pract. 2014;15(1):82–85.

[18] Forough Reyhani M, Ghasemi N, Rahimi S, et al. Push-out bond strength of dorifill, epiphany and mta-fillapex sealers to root canal dentin with and without smear layer. Iran Endod J. 2014;9(4):246–250.

[19] Ravikumar J, Bhavana V, Thatimatla C, et al. The effect of four different irrigating solutions on the shear bond strength of endodontic sealer to dentin - an in-vitro study. J Int Oral Health. 2014;6(1):85–88.

[20] Leal F, Simao RA, Fidel SR, et al. Effect of final irrigation protocols on push-out bond strength of an epoxy resin root canal sealer to dentin. Aust Endod J. 2015;41(3): 135–139.

[21] Uzunoglu E, Turker SA, Karahan S. The effect of increased temperatures of QMix and EDTA on the push-out bond strength of an epoxy-resin based sealer. J Clin Diagn Res. 2015;9(7):ZC98–ZC101.

[22] Franceschini KA, Silva-Sousa YT, Lopes FC, et al. Bond strength of epoxy resin-based root canal sealer to human root dentin irradiated with Er,Cr:YSGG laser. Lasers Surg Med. 2016;48(10):985–994.

[23] Guneser MB, Arslan D, Dincer AN, et al. Effect of sodium hypochlorite irrigation with or without surfactants on the bond strength of an epoxy-based sealer to dentin. Clin Oral Invest. 2017;21(4):1259–1265.

[24] Guzel C, Uzunoglu E, Dogan Buzoglu H. Effect of low-surface tension EDTA solutions on the bond strength of resin-based sealer to young and old root canal dentin. J Endod. 2018;44(3):485–488.

[25] Donnermeyer D, Vahdat-Pajouh N, Schafer E, et al. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology.
2019;107(2):231–236.

[26] Keine KC, Kuga MC, Tormin FBC, et al. Effect of peracetic acid used as single irrigant on the smear layer, adhesion, and penetrability of AH Plus. Braz Oral Res. 2019;29(33):e057.

[27] Souza MA, Hoffmann IP, Menchik VHS, et al. Influence of ultrasonic activation using different final irrigants on antimicrobial activity, smear layer removal and bond strength of filling material. Aust Endod J. 2019;45(2):209– 215. [28] Rocha AW, de Andrade CD, Leitune VC, et al. Influence of endodontic irrigants on resin sealer bond strength to radicular dentin. Bull Tokyo Dent Coll. 2012;53(1):1–7.

[29] Kumar PS, Meganathan A, Shriram S, et al. Effect of proanthocyanidin and bamboo salt on the push-out bond strength of an epoxy resin sealer to sodium hypochloritetreated root dentin: an in vitro study. J Conserv Dent. 2019;22(2):144–148.

[30] Hashem AA, Ghoneim AG, Lutfy RA, Fouda MY. The effect of different irrigating solutions on bond strength of two root canal-filling systems. J Endod. 2009;35(4):537–540.

[31] Razmi H, Bolhari B, Karamzadeh Dashti N, et al. The effect of canal dryness on bond strength of bioceramic and epoxy-resin sealers after irrigation with sodium hypochlorite or chlorhexidine. Iran Endod J. 2016;11(2):129–133.
[32] Antunes PVS, Flamini LES, Chaves JFM, et al. Comparative effects of final canal irrigation with chitosan and EDTA. J Appl Oral Sci.

2019;28(28):e20190005.

[33] Gupta H, Kandaswamy D, Manchanda SK, et al. Evaluation of the sealing ability of two sealers after using chlorhexidine as a final irrigant: an in vitro study. J Conserv Dent. 2013;16(1):75–78.

[34] Souza MA, Hoffmann IP, Menchik VHS, et al. Influence of ultrasonic activation using different final irrigants on antimicrobial activity, smear layer removal and bond strength of filling material. Aust Endod J. 2019;45(2):209–15.
[35] Cecchin D, Farina A, Bedran-Russo A. The effects of endodontic substances and naturally reducing agents on the bond strength of epoxy resinbased sealer to root dentin. J Conserv Dent. 2017;20(5):302–6.

[36] Dalbem F, De Carli S, Farina AP, et al. The effect of different solutions on bond strength of two root canal sealers. Rev Odonto Ciencia. 2015;30(4):161–6.

[37] El-Ma'aita AM, Qualtrough AJ, Watts DC. The effect of smear layer on the pushout bond strength of root canal calcium silicate cements. Dent Mater. 2013;29(7):797–803.

[38] Gandhi B, Bollineni S, Janga RK, et al. Evaluating the Effect of CPP-ACP as a Final Irrigant in Improving the Micro-Hardness of Erosive Root Dentin and

its Influence on the Bond Strength of Self Etch Resin Sealer - An In-vitro Study. J Clin Diagn Res. 2016;10(8):Zc53–6.

[39] Graziele Magro M, Kuga MC, Regina Victorino K, et al. Evaluation of the interaction between sodium hypochlorite and several formulations containing chlorhexidine and its effect on the radicular dentin–SEM and push-out bond strength analysis. Microsc Res Tech. 2014;77(1):17–22.

[40] Kamalasanan RR, Devarasanahalli SV, Aswathanarayana RM, et al. Effect of 5% Chlorine Dioxide Irrigant on Micro Push Out Bond Strength of Resin Sealer to Radicular Dentin: An In Vitro Study. J Clin Diagn Res.

2017;11(5):Zc49-zc53.

[41] Magro MG, Kuga MC, Aranda-Garcia AJ, et al. Effectiveness of several solutions to prevent the formation of precipitate due to the interaction between sodium hypochlorite and chlorhexidine and its effect on bond strength of an epoxy-based sealer. Int Endod J. 2015;48(5):478–83.

[42] Ok E, Ertas H, Saygili G, et al. Effect of photoactivated disinfection on bond strength of root canal filling. J Endod. 2013;39(11):1428–30.

[43] Shokouhinejad N, Gorjestani H, Nasseh AA, et al. Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer. Aust Endod J. 2013;39(3):102–6.

[44] Stelzer R, Schaller HG, Gernhardt CR. Push-out bond strength of realsealSE and AH plus after using different irrigation solutions. J Endod.2014;40(10):1654–7.

[45] Yavari H, Ghasemi N, Divband B, et al. The effect of photodynamic therapy and polymer solution containing nano-particles of Ag /ZnO on push-out bond strength of the sealers AH-Plus and MTA Fillapex. J Clin Exp Dent. 2017;9(9):e1109–e14.

# **Table Captions**

Table 1 – Search strategy.

 Table 2 – Characteristics of included studies.

Table 3 – Effects of irrigant solutions on POBS of sealers.

# **Figure Captions**

Figure 1 – Flow diagram of study selection.

**Figure 2** – Review authors' judgements about each risk of bias item presented as percentages across all included studies and about each risk of bias item for each included study.

## Table 1 – Search strategy

## PUBMED

("Root Canal Irrigants"[Mesh] OR "Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCI" OR "CHX" OR "ethylenediamine tetraacetic acid")) AND ("sealer" OR "canals sealer" OR "Root Canal Sealer")) AND push out bond strength)

## SCOPUS

"Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCI" OR "CHX" OR "ethylenediamine tetraacetic acid" AND "sealer" OR "canals sealer" OR "Root Canal Sealer" AND push AND out AND bond AND strength AND (LIMIT-TO (SUBJAREA, "DENT")) AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "re"))

| Table 2 – Characteristics of | of included studies. |
|------------------------------|----------------------|
|------------------------------|----------------------|

| Author                                  | Method/technique<br>used for<br>instrumentation | Method/technique used for obturation   | Type of the teeth<br>(human or animal) | Time between obturation and push-out test    |
|-----------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| Albino Souza, M., et al.<br>(2017).     | ProTaper rotary system                          | Lateral condensation<br>technique      | Human                                  | 37°C and 95% humidity for 20 days.           |
| Antunes, P.V.S., et al<br>(2020).       | Reciproc                                        | Unclear                                | Human                                  | 100% relative humidity and 37°C for 72 hours |
| Aranda-Garcia, A. J., et<br>al. (2013). | ProTaper rotary system                          | Single-cone technique                  | Human                                  | 37°C and 100% humidity for 7 days            |
| Cecchin, D., et al. (2017).             | ProTaper rotary system                          | Cold lateral compaction technique      | Human                                  | 2 weeks                                      |
| Dalbem, F., et al. (2015).              | K-files (manual)                                | Lateral condensation<br>technique      | Animal                                 | 37°C and 100% humidity for 7 days            |
| Dinesh, K., et al. (2014).              | K3 nickel-titanium rotary<br>instruments        | Thermoplasticized obturation technique | Human                                  | 100% humidity for 48 hours                   |
| Donnermeyer, D., et al.<br>(2019).      | NiTi F360 rotatory files                        | Single-cone technique                  | Human                                  | 7°C and 100% humidity for 2 months           |

| El-Ma'aita, A. M., et al.<br>(2013).   | ProTaper rotary system                                   | Thermoplastic injection technique    | Human | 37°C in synthetic tissue fluid (STF) for 7<br>days                |
|----------------------------------------|----------------------------------------------------------|--------------------------------------|-------|-------------------------------------------------------------------|
| Ertas, H. and B. Sagsen<br>(2015).     | ProTaper rotary system                                   | Cold lateral compaction<br>technique | Human | 37°C for 3 days                                                   |
| Fahmy, S. H., et al. (2015).           | ProTaper rotary system                                   | Lateral condensation<br>technique    | Human | NR                                                                |
| Forough Reyhani, M., et<br>al. (2014). | RaCe rotary system                                       | Lateral condensation<br>technique    | Human | 5% relative humidity and 37°C                                     |
| Franceschini, K. A., et al.<br>(2016). | K3 rotary system                                         | Lateral condensation<br>technique    | Human | 37°C and 100% relative humidity for 24 hours                      |
| Gaddala, N., et al. (2015).            | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C, 100% humidity for three days                                |
| Gandhi, B., et al. (2016).             | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C and 100% humidity for one week                               |
| Graziele Magro, M., et al.<br>(2014).  | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C and 100% humidity for 7 days                                 |
| Gundogar, M., et al.<br>(2018).        | Protaper Next                                            | Single-cone technique                | Human | 37°C and 100% relative humidity for seven<br>days                 |
| Guneser, M. B., et al.<br>(2017).      | ProTaper rotary system                                   | Single-cone technique                | Human | 37 °C and 100 % humidity for 2 weeks                              |
| Gupta, H., et al. (2013).              | 0.06 profile nickel<br>titanium instruments              | Unclear                              | Human | DW at 37°C for 24 hours                                           |
| Güzel, C., et al. (2018).              | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C and 100% humidity for 2 weeks.                               |
| Hashem, A. A., et al.<br>(2009).       | K3 0.06 taper nickel-<br>titanium rotary<br>instruments  | Single-cone technique                | Human | 100% humidity for 48 hours                                        |
| Kamalasanan, R. R., et al.<br>(2017).  | ProTaper rotary system                                   | Single-cone technique                | Human | 100% humidity for 48 hours and incubated for<br>two weeks at 37°C |
| Keine, K. C., et al. (2019).           | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C and 100% relative humidity for 7 days                        |
| Kumar, P., et al. (2019).              | ProTaper rotary system                                   | Single-cone technique                | Human | DW for 7 days                                                     |
| Leal, F., et al. (2015).               | ProTaper rotary system                                   | Unclear                              | Human | 37°C and 100% relative humidity for 1 week                        |
| Magro, M. G., et al. (2015).           | ProTaper rotary system                                   | Single-cone technique                | Human | 37°C and 100% humidity for 7 days                                 |
| Mozayeni, M. A., et al.<br>(2013).     | FlexMaster nickel<br>titanium rotary files + K-<br>files | Cold lateral compaction technique    | Human | 100% humidity at 37°C for 24 h.                                   |
| Ok, E., et al. (2013).                 | ProTaper rotary system                                   | Lateral condensation<br>technique    | Human | 37 °C and 95% humidity for 1 week                                 |

| Pheenithicharoenkul, S. and A. Panichuttra (2016). | ProTaper rotary system                     | Lateral condensation<br>technique               | Human  | 37°C and 100% humidity for 48 h                 |
|----------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------|-------------------------------------------------|
| Prado, M., et al. (2013).                          | Mtwo nickel-titanium<br>rotary system      | Gutta-percha cones                              | Human  | 37°C and 100% relative humidity for 2 weeks     |
| Ravikumar, J., et al.<br>(2014).                   | ProTaper rotary system                     | Single-cone technique                           | Human  | 100% humidity for 48 hours                      |
| Razmi, H., et al. (2016).                          | ProTaper rotary system                     | Lateral condensation<br>technique               | Human  | 37°C temperature and 90% humidity for one week. |
| Rocha, A. W., et al.<br>(2012).                    | K-files (manual)                           | Cold lateral compaction;<br>Vertical compaction | Animal | 37°C and 100% humidity for 7 days               |
| Shokouhinejad, N., et al.<br>(2010).               | Mtwo nickel-titanium<br>rotary instruments | Lateral condensation<br>technique               | Human  | 7 days at 37°C with 100% humidity.              |
| Shokouhinejad, N., et al.<br>(2013).               | Mtwo rotary instruments                    | Cold lateral compaction technique               | Human  | 37°C and incubated for 7 days.                  |
| Souza, M. A., et al. (2019).                       | ProTaper rotary system                     | Lateral condensation<br>technique               | Human  | 37°C and 95% humidity for 21 days.              |
| Stelzer, R., et al. (2014).                        | ProFile Nickel Titanium<br>Rotary System   | Cold lateral compaction technique               | Human  | 1 week                                          |
| Trindade, T. F., et al.<br>(2018).                 | ProTaper rotary system                     | Cold lateral compaction technique               | Animal | Water for 24 h or 6 months                      |
| Uzunoglu, E., et al. (2015).                       | ProTaper rotary system                     | Single-cone technique                           | Human  | 37°C in 100% humidity for 2 weeks               |
| Yavari, H., et al. (2017).                         | RaCe rotary system                         | Lateral condesantion technique                  | Human  | 95% humidity and 37°C for a week                |

**Table 3** – Effects of irrigant solutions on POBS of sealers.

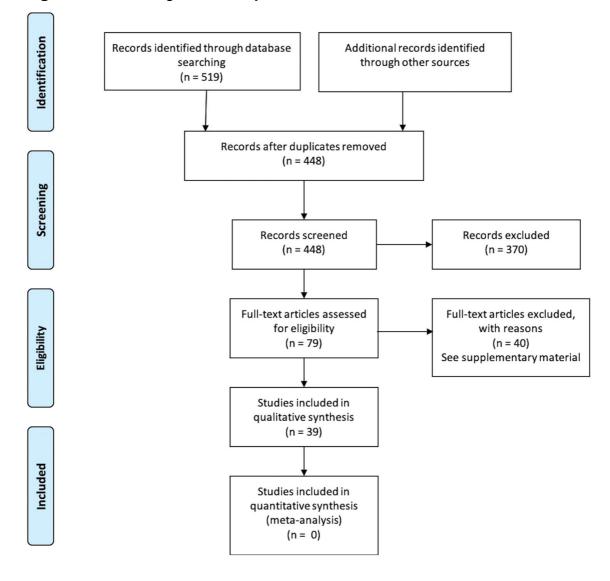
| Table 3. Effects of irrigant solutions on POBS of sealers. |                                                                                     |                                          |                                                |             |         |                                                                                                                   |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                            |                                                                                     | Irrigant solutions                       |                                                |             |         |                                                                                                                   |  |  |  |
| Author                                                     | During endodontic<br>treatment                                                      | Final endodontic<br>treatment            | Final rinse                                    | Surfactants | Sealer  | Main findings                                                                                                     |  |  |  |
| Albino<br>Souza, M.,<br>et al.<br>(2017).                  | 2.5% NaOCI (after<br>each change of<br>instrument, 5x) + 3 mL<br>of 17% EDTA (Final | DW (control); 2% CHX;<br>Qmix; 6.5% GSE. | All roots were<br>irrigated with 5<br>mL of DW | NU          | AH Plus | The final decontamination protocols<br>showed similar bond strength values<br>and did not interfere with the bond |  |  |  |

|                                                | rinse) for 1 min +<br>followed by irrigation<br>with 5 mL of DW (all<br>groups).                                                                                                                                                                        |                                                                                                                   |                                                                  |    |                       | strength of filling material to root canal dentin.                                                                                                   |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antunes,<br>P.V.S., et<br>al (2020)            | 2 mL of a 1% NaOCI<br>(all groups)                                                                                                                                                                                                                      | 5mL of 15% EDTA; 5<br>mL of 0.2% chitosan<br>solution                                                             | NP                                                               | NU | AH Plus               | The final irrigation with 15% EDTA or 0.2% chitosan achieved comparable effects in terms of reducing bond strength.                                  |
| Aranda-<br>Garcia, A.<br>J., et al.<br>(2013). | 2.5% NaOCI (all<br>groups)                                                                                                                                                                                                                              | DW (control); QMiX;<br>SmearClear; 17% EDTA                                                                       | 2.5% NaOCI<br>(all groups)                                       | NU | AH Plus               | The POBS values of irrigants testing<br>were superior to the control group.<br>The final rinse with these solutions<br>promoted similar POBS values. |
| Cecchin,<br>D., et al.<br>(2017).              | 5mL of 5% NaOCI<br>before the use of the<br>instrument and 5mL of<br>NaOCI after the<br>intrumenation; 3mL of<br>2% CHX gel before<br>insertion of the<br>instrument into the root<br>canal and after 5 mL of<br>DW                                     | control group (without a<br>naturally derived<br>reducing agent); 5mL of<br>10% GSE; 5mL of 10%<br>Green Tea (GT) | 3 mL of 17%<br>EDTA for 1<br>min + 5 mL of<br>DW (all<br>groups) | NU | AH Plus               | The irrigation protocols and naturally<br>derived reducing agents had no<br>effect on the POBS of the resin-<br>based sealer to root dentin.         |
| Dalbem,<br>F., et al.<br>(2015).               | NaCI (auxiliary<br>chemical substance<br>and irrigating<br>solution)(control<br>group); 2% CHX gel<br>(auxiliary chemical<br>substance) + NaCL<br>(irrigating solution);<br>5.25% NaOCI<br>(auxiliary chemical<br>substance and<br>irrigating solution) | NU                                                                                                                | 17%EDTA (all<br>groups)                                          | NU | AH Plus; MTA Fillpaex | The irrigating protocols did not<br>influence the POBS of either sealer.                                                                             |

| Dinesh, K.,<br>et al.<br>(2014).         | 5 mL of 3% NaOCI<br>between each<br>instrument (all groups)                                                   | 5 mL of 17% EDTA; 5<br>mL 17% EDTA + 5 mL<br>of 2% CHX                                                        | NU                                                                                                                                                                 | NU  | AH Plus                             | The use of 2% CHX as a final rinse<br>following 17% EDTA significantly<br>improved the bond strength of<br>GP/AH Plus.                                                                                                                                                                                                                          |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Donnerme<br>yer, D., et<br>al. (2019).   | 2.5 mL of 3% NaOCI                                                                                            | 5 mL of 3% NaOCI 3% +<br>5 mL of 17% EDTA 17%<br>(contact time 5 min)                                         | 5mL of 3%<br>NaOCI; 5 mL<br>of 2% CHX; 5<br>mL of 17%<br>EDTA; 5 mL of<br>20% citric acid<br>(CA) or 5 mL<br>of 0.9% NaCI<br>(each solution<br>for 5 min)          | NU  | AH Plus; BioRoot<br>RCS; GuttaFlow2 | The POBS of AH Plus was positively<br>influenced by EDTA and NaOCI.<br>EDTA had a negative effect on the<br>POBS of BioRoot RCS. The POBS of<br>GuttaFlow2 was not influenced by<br>the irrigation solutions.                                                                                                                                   |
| El-Ma'aita,<br>A. M., et al.<br>(2013).  | 1% NaOCI                                                                                                      | 17% EDTA for 1 min;<br>control group without<br>EDTA                                                          | NU                                                                                                                                                                 | NU  | AH Plus                             | Whether smear layer removal<br>improved the bond strength between<br>the sealer and the radicular dentin<br>could not be detected by this test.                                                                                                                                                                                                 |
| Ertas, H.<br>and B.<br>Sagsen<br>(2015). | 1mL of SS; 1% NaOCI;<br>17% EDTA; 17%<br>EDTA+1%NaOCI; 2%<br>CHX solution;<br>1.3%NaOCI (MTAD<br>final rinse) | NU                                                                                                            | 5mL of the<br>same<br>solutions. Only<br>in MTAD<br>group the final<br>flush was<br>perfomed with<br>5mL of MTAD<br>(during<br>instrumentatio<br>n 1.3%<br>NaOCI). | NU  | AH Plus                             | The root fillings of the groups<br>irrigated with MTAD showed<br>significantly lower push-out bond<br>strength values than the groups<br>irrigated with 1% NaOCI, 17% EDTA<br>and 1% NaOCI, 2% CHX, and SS.<br>MTAD reduces the bond strength of<br>root canal sealer to root canal dentin<br>when compared with other irrigating<br>solutions. |
| Fahmy, S.<br>H., et al.<br>(2015).       | 3mL of 2.5% NaOCI at each file change                                                                         | 17%EDTA + 2.5%<br>NaOCI; 17% EDTA with<br>0.9% T80 + 2.5%<br>NaOCI; 17% EDTA +<br>2.5% NaOCI solution<br>with | 5mL of<br>decalcifying<br>agent + 5mL of<br>2.5% NaOCI<br>for 1min + 5mL                                                                                           | Т80 | AH Plus                             | Tween 80 addition to the<br>demineralizing irrigants improved the<br>bond strength value of gutta percha/<br>AH Plus to radicular dentin whereas<br>its addition to NaOCI gave lower<br>results.                                                                                                                                                |

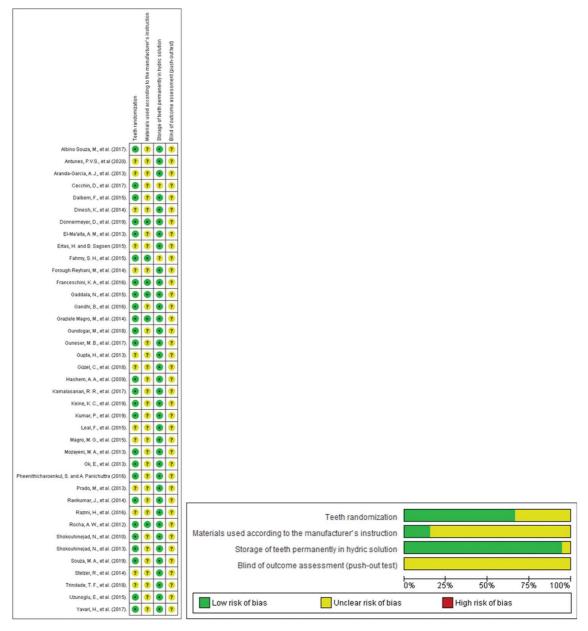
|                                               |                                                                            | 0.6% T80; 7% EDTA<br>with 0.9% T80 +<br>2.5%NaOCI with 0.6%<br>T80; 7% MA + 2.5%<br>NaOCI; 7% MA with 1%<br>T80 + 2.5% NaOCI; 7%<br>MA + 2.5% NaOCI with<br>0.6% T80; 7% MA with<br>1% T80 + 2.5% NaOCI<br>with 0.6% T80. | of DW for<br>1min.                                        |    |                               |                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forough<br>Reyhani,<br>M., et al.<br>(2014).  | 2.5% NaOCI; SS                                                             | NU                                                                                                                                                                                                                        | for<br>2.5%NaOCI<br>group - SS +<br>17% EDTA for<br>5 min | NU | Dorifill; MTA Fillapex        | Irrespective of the sealer type, the<br>mean bond strength to dentin after<br>irrigation with 2.5% NaOCI+17%<br>EDTA was higher than irrigation with<br>normal SS solution. Removal of the<br>smear layer increased the resistance<br>to displacement of root filling<br>materials. |
| Francesch<br>ini, K. A.,<br>et al.<br>(2016). | 2mL of distilled and<br>deionized water<br>(DDW) at each change<br>of file | DDW; 1% NaOCI; 17%<br>EDTA + Cetavlon<br>(EDTAC), all for 10 min.                                                                                                                                                         | 10 mL of DDW                                              | NU | AH Plus                       | Final irrigation with 17%EDTAC<br>provided higher bond strength<br>compared with DW.                                                                                                                                                                                                |
| Gaddala,<br>N., et al.<br>(2015).             | 5mL of 5.25% NaOCI between each file                                       | 5mL of peracetic acid<br>(PAA); 5mL of smear<br>clear                                                                                                                                                                     | DW for 1 min                                              | NU | Kerr; Apexit plus; AH<br>Plus | Peracetic acid when employed as<br>final irrigant improved the bond<br>strength of root canal sealers<br>compared to control group but not<br>statistically significant than smear<br>clear.                                                                                        |
| Gandhi,<br>B., et al.<br>(2016).              | Normal SS                                                                  | 10 mL of 17% EDTA +<br>10 mL of 5.25% of<br>NaOCI for 5 min; 10 mL<br>of 17% EDTA for 5 min<br>+ 10 mL of 5.25%<br>NaOCI for 5 min + 10<br>mL of Casein<br>Phosphopeptide-                                                | NU                                                        | NU | Real Seal SE                  | CPP-ACP did not affect the bond<br>strength. There was no statistically<br>significant difference detected among<br>the push-out bond strength of CPP-<br>ACP and EDTA + NaOCI groups                                                                                               |

|                                             |                                                            | Amorphous Calcium<br>Phosphate (CPP-ACP)<br>for 10 min |                                                                                                                                                                                                                                                          |                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graziele<br>Magro, M.,<br>et al.<br>(2014). | 5 mL of 2.5% NaOCI<br>for 1 min between<br>each instrument | 17% EDTA for 3 min + 5<br>mL of 2.5% NaOCI             | 2%CHX<br>solution; 2%<br>chlorhexidine<br>digluconate<br>gel (CHX gel);<br>2% CHX<br>modified<br>solution; 2%<br>chlorhexidine<br>digluconate<br>with a<br>surfactant<br>(CHX Plus).<br>The CHX<br>formulations<br>were kept<br>intracanal for 3<br>min. | Used on<br>CHX Plus<br>(2% CHX<br>with a<br>nonionic<br>surfactant<br>(Triton-X) | AH Plus                   | CHX groups provided similar bond<br>strength values of the root canal<br>filling when AH Plus sealer was used,<br>when compared with control group                                                                                                                                                                                                                                                                                   |
| Gundogar,<br>M., et al.<br>(2018).          | 2 mL 2.5% NaOCI                                            | NP                                                     | 5 mL of 17%<br>EDTA for<br>1min; 5 mL of<br>2% CHX for<br>1min + DW;<br>5mL QMix<br>2in1 for 1min                                                                                                                                                        | NU                                                                               | Endosequence BC<br>sealer | There was a significant difference<br>between the push out bond strengths<br>of Endosequence BC sealer with<br>respect to type the irrigation solution.<br>Endosequence BC sealer showed<br>the highest bond strength values<br>when QMix 2in1 was used as the<br>final irrigant. On the other hand,<br>Endosequence BC sealer showed<br>the lowest bond strength values<br>when NaOCI was used as the final<br>irrigation solution. |
| Guneser,                                    | 3 mL 1 % NaOCI + 5                                         | 5 % NaOCI + 0.1%                                       | 5 mL NaOCI                                                                                                                                                                                                                                               | 0.1% BAK;                                                                        | AH Plus                   | The bond strength in the                                                                                                                                                                                                                                                                                                                                                                                                             |
| M. B., et al.<br>(2017).                    | mL 17 % EDTA for 1<br>min                                  | Benzalkonium chloride<br>(BAK); 5 % NaOCI +            | for 1 min                                                                                                                                                                                                                                                | 0.1% T80;<br>0.1% TRX                                                            |                           | NaOCI+TRX group was higher than that in the control, NaOCI-BAK, and                                                                                                                                                                                                                                                                                                                                                                  |


| Gupta, H.,<br>et al.<br>(2013).              | 5.25% NaOCI + 5 mL<br>of 17% EDTA for 1min                                                                                                                                                     | 0.1% T80; 5 % NaOCI+<br>0.1% Triton X-100<br>(TRX)                                              | 5mL 2%CHX<br>solution for 10<br>min        | NU | AH Plus | NaOCI + T80 groups. The bond<br>strength of both the NaOCI + BAK<br>and NaOCI + T80 groups was similar<br>to that of the control group.The precipitate formed by a<br>combination of sodium hypochlorite<br>and chlorhexidine tends to affect the<br>bond strength of the sealers used for<br>obturation. The highest bond strength |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Güzel, C.,<br>et al.                         | 3 mL 2.5% NaOCI between each file.                                                                                                                                                             | 3 mL EDTA; REDTA<br>(17% EDTA + 0.84 g                                                          | 3 mL SS<br>(NaOCI                          | NU | AH Plus | is noted in the AH Plus group without<br>precipitate<br>EDTA-T, REDTA, and EDTA<br>significantly increased the bond                                                                                                                                                                                                                 |
| (2018).                                      |                                                                                                                                                                                                | cetyltrimethylammonium<br>bromide); EDTA-T (17%<br>EDTA + 1.25% sodium<br>lauryl ether sulfate. | groups); 3 mL<br>SS (control<br>group)     |    |         | strength values of gutta-percha/AH<br>Plus sealer to the root canal dentin<br>compared with SS. Moreover, EDTA-<br>T provided significantly higher bond<br>strength values compared with the<br>EDTA group. (type of EDTA<br>compounds).                                                                                            |
| Hashem,<br>A. A., et al.<br>(2009).          | 3 mL of 2.6% NaOCI between each file size.                                                                                                                                                     | 5 mL 17% EDTA; 5 mL<br>17% EDTA + 5 mL 2%<br>CHX; 5 mL MTAD; 5 mL<br>MTAD + 5 mL 2% CHX         | NP                                         | NU | AH Plus | The bond strength of gutta-<br>percha/AH plus was adversely<br>affected by MTAD and MTAD/CHX.                                                                                                                                                                                                                                       |
| Kamalasa<br>nan, R. R.,<br>et al.<br>(2017). | 3% NaOCI + 17%<br>EDTA (final rinse) for 1<br>min; 5% Chlorine<br>dioxide (ClO2) + 17%<br>EDTA (final rinse) for 1<br>min; 5% ClO2 (during<br>and final rinse); SS<br>(during and final rinse) | NU                                                                                              | 5 mL of<br>deionized<br>water              | NU | AH Plus | The bond strength values of CIO2<br>were comparable with conventional<br>NaOCI and EDTA combination. The<br>bond strength of epoxy sealers to<br>root dentin after using various<br>irrigants and irrigation protocol used<br>in this study is not significantly<br>different from one another (except<br>SS group).                |
| Keine, K.<br>C., et al.<br>(2019).           | 1% peracetic acid<br>(PAA); 2.5% NaOCI +<br>17% EDTA; 2.5%                                                                                                                                     | NU                                                                                              | For NaOCI-<br>EDTA-NaOCI<br>group: 3 mL of | NU | AH Plus | There was no difference between the<br>PAA and NaOCI-EDTA-NaOCI<br>groups and in both these groups, the                                                                                                                                                                                                                             |

|                                    | NaOCI (NaOCI-EDTA-<br>NaOCI); 2.5% NaOCI;<br>SS solution (SS). |                                                                       | 17% EDTA for<br>3 minutes + 2<br>mL of 2.5%<br>NaOCI for 1<br>minute; Other<br>groups: 5 mL<br>of DW for 4<br>minutes                                                        |    |         | root canal sealer showed higher<br>values for bond strength to root<br>dentin than those of the NaOCI and<br>SS groups.                                                                                                                                                                                                                                                                                        |
|------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kumar, P.,<br>et al.<br>(2019).    | 5.25% NaOCI between instruments                                | 5 mL of 17% EDTA+ 5<br>mL of 5.25% NaOCI                              | 5 mL and 5<br>min (all<br>groups): SS;<br>6.5% PA+ 5<br>mL DW; 25%<br>(bambo salt)<br>BS + 5 mL DW                                                                           | NU | AH Plus | 5.25% NaOCI significantly decreased<br>the bond strength of AH Plus to<br>dentin. Both 6.5% PA and 25% BS<br>were capable of reversing the<br>compromised POBS of AH Plus to<br>NaOCI-treated dentin. Final irrigation<br>with antioxidants such as PA and BS<br>eliminates the risk of reduced bond<br>strength of AH Plus to root canal<br>walls, which ensues following the use<br>of NaOCI as an irrigant. |
| Leal, F., et<br>al. (2015).        | 1mL of 5.25% NaOCI;<br>1mL of 2% CHX gel                       | 17% EDTA; QMix 2 in 1<br>for 3 min (renewed<br>every 1 min - 1mL/min) | 1 mL of<br>NaOCI; CHX<br>solution; DW                                                                                                                                        | NU | AH Plus | The group NaOCI/EDTA/NaOCI<br>showed significantly higher bond<br>strength values than other groups.<br>The final irrigation protocols affect<br>the push-out bond strength of AH<br>Plus to dentin.                                                                                                                                                                                                           |
| Magro, M.<br>G., et al.<br>(2015). | 5 mL of 2.5% NaOCI<br>between each<br>instrument change        | 17% EDTA for 3 min + 5<br>mL of 2.5% NaOCI                            | 2.5% NaOCI +<br>the root canal<br>was aspirated<br>and dried with<br>paper points +<br>5mL of 2%<br>CHX; 2.5%<br>NaOCI + 5 mL<br>of isopropyl<br>alcohol + 5mL<br>of 2% CHX; | NU | AH Plus | Independent of the root third<br>evaluated, there were no differences<br>between the control and<br>experimental groups. The various<br>irrigation protocols did not interfere<br>with the bond strength values of on<br>epoxy-based sealer.                                                                                                                                                                   |

|                                                                  |                                                                        |                                                                                                                                                                                                                                            | 2.5% NaOCI +<br>SS + 5mL of<br>2% CHX;<br>2.5% NaOCI +<br>DW + 5mL of<br>2% CHX |    |         |                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mozayeni,<br>M. A., et al.<br>(2013).                            | 5 mL NaOCI between each file                                           | 5 mL of 1.3% NaOCI<br>between each<br>instrument + MTAD<br>protocol (4 mL rinse + 1<br>mL remaining in root<br>canal for 5 min); 5 mL of<br>5.25% NaOCI + 5 mL of<br>17% EDTA for 1 min                                                    | NP                                                                              | NU | AH 26   | The mean bond strength of AH26<br>sealer to dentin walls was<br>significantly greater using MTAD<br>compared with combination of EDTA<br>and NaOCI or SS.                                                                                                                                                                                                                             |
| Ok, E., et<br>al. (2013).                                        | 2mL SS after each<br>instrumentation                                   | 3 mL of 17% EDTA for 1<br>minute + 3 mL of 5.25%<br>NaOCI for 1 minute + 5<br>mL of DW for 1 min                                                                                                                                           | 3 mL of 2%<br>CHX solution;<br>NaOCI +<br>EDTA (control<br>group)               | NU | AH Plus | There was no significant difference<br>among the bond strength of the CHX<br>and NaOCI groups                                                                                                                                                                                                                                                                                         |
| Pheenithic<br>haroenkul,<br>S. and A.<br>Panichuttr<br>a (2016). | 1 mL of 2.5% NaOCI<br>between files                                    | 5 mL of 17% EDTA 5<br>min; 5 mL of 17% EDTA<br>5 min + 5 mL of 2.5%<br>NaOCI 1 min; 5 mL of<br>17% EDTA 5 min + 5<br>mL of 1mg/mL EGCG 5<br>min; 5 mL of 1 mg/mL<br>epigallocatechin-3-<br>gallate (EGCG) from<br>green tea extract 10 min | NU                                                                              | NU | AH Plus | EDTA+EGCG group significantly<br>showed the highest push out bond<br>strength. EGCG group showed<br>higher bond strength than EDTA<br>group with statistical significance.<br>There was no significant difference in<br>the mean bond strength value<br>between EDTA and EDTA+NaOCI<br>group. Final irrigation with NaOCI<br>(control group) resulted in the lowest<br>bond strength. |
| Prado, M.,<br>et al.<br>(2013).                                  | 6 mL DW; 1 mL 5.25%<br>NaOCI + 5mL DW; 1<br>mL 2% CHX gel + 5<br>mL DW | 10mL DW (all groups): 3<br>mL DW; 3 mL 17%<br>EDTA; 3 mL 37% PhA                                                                                                                                                                           | 10 mL DW; 5<br>mL DW + 5 mL<br>2% CHX<br>solution                               | NU | AH Plus | When NaOCI was used as the<br>irrigant during chemomechanical<br>preparation, significantly higher<br>POBS values were obtained when<br>PhA was used for smear layer<br>removal. When CHX was used                                                                                                                                                                                    |


| Ravikumar<br>, J., et al.<br>(2014).     | 3 mL of 2.6% NaOCI between each file size.                                                                            | 2, 5 mL of 7% MA; 5 mL<br>of 10 % CA; 5 mL of<br>MTAD                                | NP                                                 | NU | AH Plus                            | during chemomechanical<br>preparation, the use of EDTA allowed<br>better POBS values. The use of CHX<br>as the final irrigant did not affect the<br>bond strength<br>NaOCI/MA/AH Plus yielded<br>significantly the highest mean POBS.<br>The significantly lowest mean POBS<br>was recorded for group<br>NaOCI/MTAD/AH Plus. A final rinse |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|----|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                       |                                                                                      |                                                    |    |                                    | with MTAD might have a negative<br>effect on the bonding ability of AH<br>Plus sealer.                                                                                                                                                                                                                                                     |
| Razmi, H.,<br>et al.<br>(2016).          | SS during treatment +<br>10 mL of 17% EDTA<br>for 1 min + 10 mL of<br>5.25% NaOCI + 20 mL<br>of SS                    | 2% CHX; 5.25% NaOCI                                                                  | NP                                                 | NU | Adseal; AH Plus; BC<br>sealer      | The bond strength of Adseal was not<br>affected with either NaOCI or CHX.<br>The POBS of AH Plus was not<br>affected by the any irrigant type. For<br>Endosequence BC sealer, the CHX<br>reduced the POBS.                                                                                                                                 |
| Rocha, A.<br>W., et al.<br>(2012).       | SS; 2.5% NaOCI; 2%<br>CHX gel (1mL<br>between each file)                                                              | 17% EDTA for 3min +<br>removed using the same<br>irrigant used in the<br>irrigation. | NP                                                 | NU | AH Plus                            | NaOCI adversely affected POBS of AH Plus, whereas CHX did not influence the POBS.                                                                                                                                                                                                                                                          |
| Shokouhin<br>ejad, N., et<br>al. (2010). | 3 mL of 5.25% NaOCI<br>+ 5 mL of 17% EDTA<br>for 1 min; 3 mL of<br>1.3% NaOCI + 1 mL of<br>BioPure MTAD for 5<br>min; | NP                                                                                   | MTAD protocol<br>with 4 mL<br>(only MTAD<br>group) | NU | AH 26                              | The group with 5.25% NaOCI+EDTA had a significantly higher POBS than all of the other groups.                                                                                                                                                                                                                                              |
| Shokouhin<br>ejad, N., et<br>al. (2013). | 3 mL of 5.25% NaOCI between each file                                                                                 | 5 mL of 5.25% NaOCI; 5<br>mL of 17% EDTA for 1<br>min + 5 mL of 5.25%<br>NaOCI       | NP                                                 | NU | EndoSequence BC<br>Sealer, AH Plus | The POBS of GP/AH Plus and<br>GP/EndoSequence BC Sealer was<br>not significantly different. The POBS<br>of the new bioceramic sealer was<br>equal to that of AH Plus with or<br>without the smear layer.                                                                                                                                   |

| Souza, M.<br>A., et al.<br>(2019).    | 2.5% NaOCI between<br>each change of<br>instrument + 5 mL of<br>DW                  | DW; 17% EDTA; Qmix                                                                  | 5 mL of DW                                                        | NU              | AH Plus                   | EDTA and Qmix groups provided the higher POBS.                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stelzer, R.,<br>et al.<br>(2014).     | 0.9% SS during<br>instrumentation                                                   | 3% NaOCI; 17% EDTA;<br>2% CHX (5mL for 4 min)                                       | 5 mL 0.9% SS<br>for 1 min                                         | NU              | AH Plus                   | Within the AH Plus groups, no<br>significant differences existed<br>between the irrigants and SS alone                                                                                                                                                                                                                                            |
| Trindade,<br>T. F., et al.<br>(2018). | 2 mL 2.5% NaOCI at<br>each file change + 5<br>mL 17% EDTA for 3<br>min + 5 mL of DW | 1 mL of 2% CHX for 1<br>min; 15%<br>proanthocyanidin (from<br>GSE capsules)         | NP                                                                | NU              | AH Plus; EndoREZ          | POBS decreased with time and AH<br>Plus had higher POBS than<br>EndoREZ in untreated dentin;<br>however, CHX or proanthocyanidin<br>enhanced long-term POBS of<br>EndoREZ.                                                                                                                                                                        |
| Uzunoglu,<br>E., et al.<br>(2015).    | 2mL 3% NaOCI<br>between each<br>instrument + 5 mL 3%<br>NaOCI for 1 min             | 5mL 17% EDTA (22°C);<br>5mL 17% EDTA (37°C);<br>5mL QMix (22°C); 5mL<br>QMix (37°C) | 5mL DW                                                            | NU              | AH Plus                   | The samples irrigated with QMix had<br>higher POBS values than the<br>samples that had been irrigated with<br>17% EDTA regardless of<br>temperature. Using QMix as a final<br>irrigant can improve POBS of epoxy-<br>resin based sealer.                                                                                                          |
| Yavari, H.,<br>et al.<br>(2017).      | SS during<br>instrumentation +<br>5.25% NaOCI for 3<br>min + 17% EDTA for 3<br>min  | Solution containing nano<br>particles Ag/ZnO; No<br>final flush                     | NPs group: 2<br>mL of polymer<br>containing Ag /<br>ZnO for 5 min | NU              | AH Plus; MTA Fillapex     | The lowest mean POBS values was<br>obtained in MTA fillapex-Ag/ZnO. AH<br>Plus sealer had higher POBS than<br>MTA Fillapex in all groups. Nano<br>disinfection had significantly negative<br>effect on the POBS of AH Plus<br>sealer, but for MTA Fillapex sealer<br>the difference between the NPs and<br>the control group was not significant. |
| hypochlorite                          | (NaOCI); Grape seed extr                                                            |                                                                                     | Citric acid (CA); F                                               | Push-out bond s | trength (POBS); Maleic ac | hlorhexidine (CHX); Sodium<br>cid (MA); Bamboo salt (BS); Peracetic                                                                                                                                                                                                                                                                               |



# Figure 1 – Flow diagram of study selection.

**Figure 2** – Review authors' judgements about each risk of bias item presented as percentages across all included studies and about each risk of bias item for each included study



# SUPPLEMENTARY MATERIAL.

# List of included studies

1.Albino Souza M, Dalla Lana D, Gabrielli E, et al. Effectiveness of final decontamination protocols against Enterococcus faecalis and its influence on bond strength of filling material to root canal dentin. Photodiagnosis Photodyn Ther. 2017;17:92-7.

2.Antunes PVS, Flamini LES, Chaves JFM, et al. Comparative effects of final canal irrigation with chitosan and EDTA. Journal of applied oral science : revista FOB. 2020;28:e20190005.

3.Aranda-Garcia AJ, Kuga MC, Vitorino KR, et al. Effect of the root canal final rinse protocols on the debris and smear layer removal and on the push-out strength of an epoxy-based sealer. Microsc Res Tech. 2013;76(5):533-7.

4.Cecchin D, Farina A, Bedran-Russo A. The effects of endodontic substances and naturally reducing agents on the bond strength of epoxy resin-based sealer to root dentin. J Conserv Dent. 2017;20(5):302-6.

5.Dalbem F, De Carli S, Farina AP, et al. The effect of different solutions on bond strength of two root canal sealers. Rev Odonto Ciencia. 2015;30(4):161-6.
6.Dinesh K, Murthy BV, Narayana IH, et al. The effect of 2% chlorhexidine on the bond strength of two different obturating materials. J Contemp Dent Pract. 2014;15(1):82-5.

7.Donnermeyer D, Vahdat-Pajouh N, Schafer E, et al. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology. 2019;107(2):231-6.

8.EI-Ma'aita AM, Qualtrough AJ, Watts DC. The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dent Mater. 2013;29(7):797-803.

9.Ertas H, Sagsen B. Comparison of the effect of MTAD and conventional irrigation agents on apical leakage and push-out bond strength of root canal filling. Scanning. 2015;37(6):393-8.

10.Fahmy SH, El Gendy AAH, El Ashry SH. Dentin wettability enhancement for three irrigating solutions and their effect on push out bond strength of gutta percha / AH Plus. J Clin Exp Dent. 2015;7(2):e237-e42.

11.Forough Reyhani M, Ghasemi N, Rahimi S, et al. Push-Out Bond Strength of Dorifill, Epiphany and MTA-Fillapex Sealers to Root Canal Dentin with and without Smear Layer. Iran Endod J. 2014;9(4):246-50.

12.Franceschini KA, Silva-Sousa YT, Lopes FC, et al. Bond strength of epoxy resin-based root canal sealer to human root dentin irradiated with Er,Cr:YSGG laser. Lasers Surg Med. 2016;48(10):985-94.

13.Gaddala N, Veeramachineni C, Tummala M. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin. J Clin Diagn Res. 2015;9(5):Zc75-7.

14.Gandhi B, Bollineni S, Janga RK, et al. Evaluating the Effect of CPP-ACP as a Final Irrigant in Improving the Micro-Hardness of Erosive Root Dentin and its Influence on the Bond Strength of Self Etch Resin Sealer - An In-vitro Study. J Clin Diagn Res. 2016;10(8):Zc53-6.

15.Graziele Magro M, Kuga MC, Regina Victorino K, et al. Evaluation of the interaction between sodium hypochlorite and several formulations containing chlorhexidine and its effect on the radicular dentin--SEM and push-out bond strength analysis. Microsc Res Tech. 2014;77(1):17-22.

16.Gundogar M, Sezgin GP, Erkan E, et al. The influence of the irrigant QMix on the push-out bond strength of a bioceramic endodontic sealer. Eur Oral Res. 2018;52(2):64-8.

17.Guneser MB, Arslan D, Dincer AN, Er G. Effect of sodium hypochlorite irrigation with or without surfactants on the bond strength of an epoxy-based sealer to dentin. Clin Oral Investig. 2017;21(4):1259-65.

18.Gupta H, Kandaswamy D, Manchanda SK, et al. Evaluation of the sealing ability of two sealers after using chlorhexidine as a final irrigant: An in vitro study. J Conserv Dent. 2013;16(1):75-8.

19.Güzel C, Uzunoglu E, Dogan Buzoglu H. Effect of Low–surface Tension EDTA Solutions on the Bond Strength of Resin-based Sealer to Young and Old Root Canal Dentin. J Endod. 2018;44(3):485-8.

20.Hashem AA, Ghoneim AG, Lutfy RA, et al. The effect of different irrigating solutions on bond strength of two root canal-filling systems. J Endod. 2009;35(4):537-40.

21.Kamalasanan RR, Devarasanahalli SV, Aswathanarayana RM, et al. Effect of 5% Chlorine Dioxide Irrigant on Micro Push Out Bond Strength of Resin Sealer to Radicular Dentin: An In Vitro Study. J Clin Diagn Res. 2017;11(5):Zc49-zc53.

22.Keine KC, Kuga MC, Tormin FBC, et al. Effect of peracetic acid used as single irrigant on the smear layer, adhesion, and penetrability of AH Plus. Braz Oral Res.. 2019;33:e057.

23.Kumar P, Meganathan A, Shriram S, et al. Effect of proanthocyanidin and bamboo salt on the push-out bond strength of an epoxy resin sealer to sodium hypochlorite-treated root dentin: An in vitro study. J Conserv Dent.. 2019;22(2):144-8.

24.Leal F, Simao RA, Fidel SR, et al. Effect of final irrigation protocols on pushout bond strength of an epoxy resin root canal sealer to dentin. Aust Endod J. 2015;41(3):135-9.

25.Magro MG, Kuga MC, Aranda-Garcia AJ, et al. Effectiveness of several solutions to prevent the formation of precipitate due to the interaction between sodium hypochlorite and chlorhexidine and its effect on bond strength of an epoxy-based sealer. Int Endod J. 2015;48(5):478-83.

26.Mozayeni MA, Zadeh YM, Paymanpour P, et al. Evaluation of push-out bond strength of AH26 sealer using MTAD and combination of NaOCI and EDTA as final irrigation. Dent Res J. 2013;10(3):359-63.

27.Ok E, Ertas H, Saygili G, et al. Effect of photoactivated disinfection on bond strength of root canal filling. J Endod. 2013;39(11):1428-30.

28.Pheenithicharoenkul S, Panichuttra A. Epigallocatechin-3-gallate increased the push out bond strength of an epoxy resin sealer to root dentin. Dent Mater J. 2016;35(6):888-92.

29.Prado M, Simão RA, Gomes BPFA. Effect of different irrigation protocols on resin sealer bond strength to dentin. J Endod. 2013;39(5):689-92.

30.Ravikumar J, Bhavana V, Thatimatla C, et al. The effect of four different irrigating solutions on the shear bond strength of endodontic sealer to dentin - An In-vitro study. J Int Oral Health. 2014;6(1):85-8.

31.Razmi H, Bolhari B, Dashti NK, et al. The effect of canal dryness on bond strength of bioceramic and epoxy-resin sealers after irrigation with sodium hypochlorite or chlorhexidine. Iran Endod J. 2016;11(2):129-33. 32.Rocha AW, de Andrade CD, Leitune VC, et al. Influence of endodontic irrigants on resin sealer bond strength to radicular dentin. Bull Tokyo Dent Coll. 2012;53(1):1-7.

33.Shokouhinejad N, Sharifian MR, Jafari M, et al. Push-out bond strength of Resilon/Epiphany self-etch and gutta-percha/AH26 after different irrigation protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(5):e88-e92.

34.Shokouhinejad N, Gorjestani H, Nasseh AA, et al. Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer. Aust Endod J. 2013;39(3):102-6.

35.Souza MA, Hoffmann IP, Menchik VHS, et al. Influence of ultrasonic activation using different final irrigants on antimicrobial activity, smear layer removal and bond strength of filling material. Aust Endod J. 2019;45(2):209-15. 36.Stelzer R, Schaller HG, Gernhardt CR. Push-out bond strength of realseal SE and AH plus after using different irrigation solutions. J Endod. 2014;40(10):1654-7.

37.Trindade TF, Barbosa AFS, Castro-Raucci LMS, et al. Chlorhexidine and proanthocyanidin enhance the long-term bond strength of resin-based endodontic sealer. Braz Oral Res. 2018;32:e44.

38.Uzunoglu E, Turker SA, Karahan S. The Effect of Increased Temperatures of QMix and EDTA on the Push-out Bond Strength of an Epoxy-resin Based Sealer. J Clin Diagn Res. 2015;9(7):Zc98-zc101.

39.Yavari H, Ghasemi N, Divband B, et al. The effect of photodynamic therapy and polymer solution containing nano-particles of Ag /ZnO on push-out bond strength of the sealers AH-Plus and MTA Fillapex. J Clin Exp Dent. 2017;9(9):e1109-e14.

# Articles excluded and reasons

## Articles did not access

1.Adl A, Abbaszadegan A, Gholami A, et al. Effect of a new imidazolium-based silver nanoparticle irrigant on the bond strength of epoxy resin sealer to root canal dentine. Iran Endod J. 2019;14(2):122-5.

2.De Lima CO, Dutra HG, Duque TM, et al. Effect of previous irrigation with chlorhexidine on the push-out bond strength of a calcium silicate-based material. Gen Dent. 2019;67(3):58-61.

3.Mazzi-Chaves JF, Martins CV, Souza-Gabriel AE, et al. Effect of a chitosan final rinse on the bond strength of root canal fillings. Gen Dent. 2019;67(5):54-7.

## Did not assess endodontic sealer

1.Çelik D, Er K, Serper A, et al. Push-out bond strength of three calcium silicate cements to root canal dentine after two different irrigation regimes. Clin Oral Investig. 2014;18(4):1141-6.

2.Sadegh M, Sohrabi H, Kharazifard M, et al. Effect of Smear Clear and some other commonly used irrigants on dislodgement resistance of mineral trioxide aggregate to root dentin. J Clin Exp Dent. 2017;9(5):e617-e21.

3.Paulson L, Ballal NV, Bhagat A. Effect of Root Dentin Conditioning on the Pushout Bond Strength of Biodentine. J Endod. 2018;44(7):1186-90.

## Assessed the same irrigant solution (without varying/variation)

 Alfredo E, Silva SRC, Ozório JEV, et al. Bond strength of AH Plus and Epiphany sealers on root dentine irradiated with 980 nm diode laser. Int Endod J. 2008;41(9):733-40.

2.De Macedo HS, Messias DCF, Rached-Júnior FJ, et al. 1064-nm Nd:YAG and 980-nm diode laser EDTA agitation on the retention of an epoxy-based sealer to root dentin. Braz Dent J. 2016;27(4):424-9.

3.Dias KC, Soares CJ, Steier L, et al. Influence of drying protocol with isopropyl alcohol on the bond strength of resin-based sealers to the root dentin. J Endod. 2014;40(9):1454-8.

4.Donnermeyer D, Gobell L, Burklein S, et al. Duration of Immersion and Type of Immersion Solution Distort the Outcome of Push-Out Bond Strength Testing Protocols. Materials. 2019;12(18).

5.Menezes M, Prado M, Gomes B, et al. Effect of photodynamic therapy and non-thermal plasma on root canal filling: Analysis of adhesion and sealer penetration. J Appl Oral Sci. 2017;25(4):396-403.

6.Nagas E, Cehreli ZC, Durmaz V. Effect of light-emitting diode photopolymerization modes on the push-out bond strength of a methacrylatebased sealer. J Endod. 2011;37(6):832-5.

7.Miletic I, Chieffi N, Rengo C, et al. Effect of photon induced photoacoustic streaming (PIPS) on bond strength to dentine of two root canal filling materials. Lasers Surg Med. 2016;48(10):951-4.

8.Topçuoğlu HS, Tuncay Ö, Demirbuga S, et al. The effect of different final irrigant activation techniques on the bond strength of an epoxy resin-based endodontic sealer: A preliminary study. J Endod. 2014;40(6):862-6.

9.Wiesse PEB, Silva-Sousa YT, Pereira RD, et al. Effect of ultrasonic and sonic activation of root canal sealers on the push-out bond strength and interfacial adaptation to root canal dentine. Int Endod J. 2018;51(1):102-11.

10.Ok E, Ertas H, Saygili G, et al. Effect of photo-activated disinfection on bond strength of three different root canal sealers. Eur J Dent. 2014;8(1):85-9.

# Did not assess the effect of irrigant solutions

1.Egilmez F, Ergun G, Cekic-Nagas I, et al. Bond strength of self-adhesive resin cements to dentin after antibacterial and chelating solution treatment. Acta Odontol Scand. 2013;71(1):22-31.

2.Ekambaram M, Yiu CKY, Matinlinna JP, e al. Effect of chlorhexidine and ethanol-wet bonding with a hydrophobic adhesive to intraradicular dentine. J Dent. 2014;42(7):872-82.

3.Souza MA, Padilha Rauber MG, Zuchi N, et al. Influence of final irrigation protocols and endodontic sealer on bond strength of root filling material with root dentin previously treated with photodynamic therapy. Photodiagnosis Photodyn Ther. 2019;26:137-41.

4.Khoroushi M, Sheikhi M, Khalilian-Gourtani A, et al. Effect of root canal rinsing protocol on dentin bond strength of two resin cements using three different method of test. J Clin Exp Dent. 2016;8(3):e246-e54.

5.Lotfi M, Ghasemi N, Rahimi S, et al. Effect of smear layer on the push-out bond strength of two endodontic biomaterials to radicular dentin. Iran Endod J.2013;9(1):41-4.

6.Lotfi M, Rahimi S, Ghasemi N, et al. Effect of smear layer on the push-out bond strength of two different compositions of white mineral trioxide aggregate. Iran Endod J.. 2013;8(4):157-9.

# Did not assess/use gutta-percha

1.Carvalho NK, Prado MC, Senna PM, et al. Do smear-layer removal agents affect the push-out bond strength of calcium silicate-based endodontic sealers? Int Endod J. 2017;50(6):612-9.

2.Fuzinatto RN, Farina AP, Souza MA, et al. Effects of an endodontic auxiliary chemical substance on the bond strength of two methacrylate-based endodontic sealers to dentin. Microsc Res Tech. 2017;80(6):627-33.
3.Baldissera R, da Rosa RA, Wagner MH, et al. Adhesion of real seal to human root dentin treated with different solutions. Braz Dent J. 2012;23(5):521-6.
4.Ehsani S, Bolhari B, Etemadi A, et al. The effect of Er,Cr:YSGG laser irradiation on the push-out bond strength of RealSeal self-etch sealer.
Photomed Laser Surg. 2013;31(12):578-85.

5.Goncalves L, Silva-Sousa YT, Raucci Neto W, et al. Effect of different irrigation protocols on the radicular dentin interface and bond strength with a metacrylate-based endodontic sealer. Microsc Res Tech. 2014;77(6):446-52.
6.Shrestha D, Wu WC, He QY, et al. Effect of sodium ascorbate on degree of conversion and bond strength of RealSeal SE to sodium hypochlorite treated root dentin. Dent Mater J. 2013;32(1):96-100.

7.Upadhyay S, Purayil T, Ballal N. Evaluation of push-out bond strength of GuttaFlow 2 to root canal dentin treated with different smear layer removal agents. Saudi Endodontic J. 2018;8(2):128-32.

8.Shokouhinejad N, Hoseini A, Gorjestani H, et al. The effect of different irrigation protocols for smear layer removal on bond strength of a new bioceramic sealer. Iran Endod J. 2013;8(1):10-3.

9.Neelakantan P, Subbarao C, Subbarao CV, et al. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J. 2011;44(6):491-8.

10.Neelakantan P, Varughese AA, Sharma S, et al. Continuous chelation irrigation improves the adhesion of epoxy resin-based root canal sealer to root dentine. Int Endod J. 2012;45(12):1097-102.

11.Nunes VH, Silva RG, Alfredo E, et al. Adhesion of epiphany and AH plus sealers to human root dentin treated with different solutions. Braz Dent J. 2008;19(1):46-50.

12.Neelakantan P, Sharma S, Shemesh H, et al. Influence of Irrigation Sequence on the Adhesion of Root Canal Sealers to Dentin: A Fourier Transform Infrared Spectroscopy and Push-out Bond Strength Analysis. J Endod. 2015;41(7):1108-11.

13.Ozkocak I, Sonat B. Evaluation of Effects on the Adhesion of Various Root Canal Sealers after Er:YAG Laser and Irrigants Are Used on the Dentin Surface. J Endod. 2015;41(8):1331-6.

14.Ozlek E, Rath PP, Kishen A, et al. A chitosan-based irrigant improves the dislocation resistance of a mineral trioxide aggregate-resin hybrid root canal sealer. Clin Oral Investig. 2020;24(1):151-6.

15.Scelza MZ, da Silva D, Scelza P, et al. Influence of a new push-out test method on the bond strength of three resin-based sealers. Int Endod J. 2015;48(8):801-6.

16.Vilanova WV, Carvalho-Junior JR, Alfredo E, et al. Effect of intracanal irrigants on the bond strength of epoxy resin-based and methacrylate resinbased sealers to root canal walls. Int Endod J. 2012;45(1):42-8.

17.Tuncel B, Nagas E, Cehreli Z, et al. Effect of endodontic chelating solutions on the bond strength of endodontic sealers. Braz oral res. 2015;29.

18.Barbizam JV, Trope M, Tanomaru-Filho M, et al. Bond strength of different endodontic sealers to dentin: push-out test. J Appl Oral Sci. 2011;19(6):644-7.

# 6. CONSIDERAÇÕES FINAIS

Baseado nos principais achados dos estudos incluídos nesse trabalho, foi possível concluir que:

(I) Em relação à influência dos irrigantes nas propriedades mecânicas dos DTE, independentemente da solução de irrigação considerada, a maioria dos estudos corrobora a ocorrência de algum dano às propriedades mecânicas dos dentes tratados endodonticamente. Assim, a literatura disponível parece determinar que fatores como concentração e tempo de exposição devem ser considerados para amenizar os efeitos deletérios, sem que isso venha a interferir nas propriedades antibacterianas. Além disso, é necessário que o profissional conheça as características de cada solução para decidir qual é a mais adequada, garantindo o sucesso do tratamento endodôntico e causando danos mecânicos mínimos ao tratamento em questão;

(II) Quanto ao uso de solventes para a remoção da guta-percha durante o retratamento endodôntico, não existe solvente unânime para a remoção eficaz do material obturador. De fato, a maioria dos estudos sugere que os solventes podem inclusive prejudicar a limpeza do canal radicular e facilitar a presença de restos de GP na superfície radicular. Assim, o uso de solventes deve ser evitado, sendo seu uso considerado se o comprimento de trabalho anterior não for possível de acessar sem essa substância;

(III) Na avaliação do efeito das soluções irrigadoras na resistência de união entre os cimentos endodônticos e a dentina do canal radicular, a utilização de substâncias irrigantes capazes de desmineralizar a superfície da dentina do canal radicular e/ou remover a camada de lama dentinária remanescente pareceu aumentar ou pelo menos não reduz a força de união por *push-out*, independentemente do tipo de cimento endodôntico utilizado.

# 7. REFERÊNCIAS

1.Fedorowicz Z, Nasser M, Sequeira P, Pedrazzi V, de Souza RF. Irrigants for non-surgical root canal treatment in mature permanent teeth. . Cochrane Database Syst Rev. 2012(9).

2.Zehnder M. Root Canal Irrigants. J Endod. 2006; 32(5):389-98.

3.Cruz-Filho AM, Sousa-Neto MD, Savioli RN, Silva RG, Vansan LP, Pecora JD. Effect of chelating solutions on the microhardness of root canal lumen dentin. J Endod. 2011;37(3):358-62.

4.Pascon FM, Kantovitz KR, Sacramento PA, Nobre-dos-Santos M, Puppin-Rontani RM. Effect of sodium hypochlorite on dentine mechanical properties. A review. J Dent. 2009;37(12):903-8.

5.Akcay I, Sen BH. The effect of surfactant addition to EDTA on microhardness of root dentin. Journal of Endodontics. 2012;38(5):704-7.

6.Zhang K, Kim YK, Cadenaro M, Bryan TE, Sidow SJ, Loushine RJ, et al. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod. 2010;36(1):105-9.

7.Uzunoglu E, Aktemur S, Uyanik MO, Durmaz V, Nagas E. Effect of ethylenediaminetetraacetic acid on root fracture with respect to concentration at different time exposures. J Endod. 2012;38(8):1110-3.

8.Uzunoglu E, Yilmaz Z, Erdogan O, Gorduysus M. Final Irrigation Regimens Affect Fracture Resistance Values of Root-filled Teeth. J Endod. 2016;42(3):493-5.

9.Wang L, Zhao Y, Mei L, Yu H, Muhammad I, Pan Y, et al. Effect of application time of maleic acid on smear layer removal and mechanical properties of root canal dentin. Acta Odontol Scand. 2017;75(1):59-66.

10.Souza EM, Quadros JRP, Silva E, De-Deus G, Belladonna FG, Maia-Filho EM. Volume and/or Time of NaOCI Influences the Fracture Strength of Endodontically Treated Bovine Teeth. Braz Dent J. 2019;30(1):31-5.

11.Bello YD, Fracaro H, Paula A, et al. Glycolic acid as the final irrigant in endodontics: mechanical and cytotoxic effects. Mater Sci Eng C 2019;100:323–9.

12.Akbulut MB, Terlemez A. Does the photon-induced photoacoustic streaming activation of irrigation solutions alter the dentin microhardness? Photobiomodul Photomed Laser Surg 2019;37:38–44.

13.Neelakantan P, Subbarao C, Subbarao CV, et al. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J. 2011;44(6):491–498.

14.Ertas H, Sagsen B. Comparison of the effect of MTAD and conventional irrigation agents on apical leakage and push-out bond strength of root canal filling. Scanning. 2015;37(6):393–398.

15.Fahmy SH, El Gendy AA, El Ashry SH. Dentin wettability enhancement for three irrigating solutions and their effect on push out bond strength of gutta percha/AH Plus. J Clin Exp Dent. 2015;7(2):e237–e242.

16.Gaddala N, Veeramachineni C, Tummala M. Effect of peracetic acid as A final rinse on push out bond strength of root canal sealers to root dentin. J Clin Diagn Res. 2015; 9(5):ZC75–ZC77.

17.Pheenithicharoenkul S, Panichuttra A. Epigallocatechin-3-gallate increased the push out bond strength of an epoxy resin sealer to root dentin. Dent Mater J. 2016;35(6):888–892.

18.Gundogar M, Sezgin GP, Erkan E, et al. The influence of the irrigant QMix on the push-out bond strength of a bioceramic endodontic sealer. Eur Oral Res. 2018;52(2):64–68.

19. Trindade TF, Barbosa AFS, Castro-Raucci LMS, et al. Chlorhexidine and proanthocyanidin enhance the long-term bond strength of resin-based endodontic sealer. Braz Oral Res. 2018;24(32):e44.

20.Virdee SS, Thomas MBM. A practitioner's guide to gutta-percha removal during endodontic retreatment. British Dental Journal. 2017;222(4):251-7.

21.Bodrumlu E, Uzun Ö, Topuz Ö, Semiz M. Efficacy of 3 techniques in removing root canal filling material. Journal of the Canadian Dental Association. 2008;74(8):721-e.

22.Good ML, McCammon A. Removal of gutta-percha and root canal sealer: A literature review and an audit comparing current practice in dental schools. Dental Update. 2012;39(10):703-8. 23.Rossi-Fedele G, Ahmed HMA. Assessment of Root Canal Filling Removal Effectiveness Using Micro–computed Tomography: A Systematic Review. Journal of Endodontics. 2017;43(4):520-6.

24.Aydin B, Köse T, Çalişkan MK. Effectiveness of HERO 642 versus Hedström files for removing gutta-percha fillings in curved root canals: An ex vivo study. International Endodontic Journal. 2009;42(11):1050-6.

25.Abramovitz I R-BS, Baransi B, Kfir A. The effectiveness of a self-adjusting file to remove residual gutta-percha after retreatment with rotary files. International Endodontic Journal 2012;45:386–92.

26.Fruchi LDC, Ordinola-Zapata R, Cavenago BC, Hungaro Duarte MA, Da Silveira Bueno CE, De Martin AS. Efficacy of reciprocating instruments for removing filling material in curved canals obturated with a single-cone technique: A micro-computed tomographic analysis. Journal of Endodontics. 2014;40(7):1000-4.

27.Sağlam BC, Koçak MM, Türker SA, Koçak S. Efficacy of different solvents in removing gutta-percha from curved root canals: A micro-computed tomography study. Australian Endodontic Journal. 2014;40(2):76-80.

28.Betti LV, Bramante CM, De Moraes IG, Bernardineli N, Garcia RB. Comparison of GPX with or without solvent and hand files in removing filling materials from root canalsAn ex vivo study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. 2010;110(5):675-80.

29.Patel S BJ. Contemporary endodontics - Part 2. British Dental Journal. 2011;211:517-24.

30.Friedman S SA, Tamse A Endodontic Retreatment - Case Selection and Technique. Part 3; Retreatment Techniques. Journal of Endodontics. 1990;16:543-9.

31.Kaufman D MC, Stabholz A, Rotstein I. Effect of guttapercha solvents on calcium and phosphorus levels of cut human dentin. J Endod. 1997;23(10):614-5.

32.Rotstein I CN, Teperovich E, Moshonov J, Mor C, Roman I, Gedalia I. . Effect of chloroform, xylene, and halothane on enamel and dentin microhardness of human teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(3):366-8. 33.Dogan H TF, Cehreli ZC. Effect of gutta-percha solvents at different temperatures on the calcium, phosphorus and magnesium levels of human root dentin. J Oral Rehabil. 2001;28(8):792-6.

34.Erdemir A, Eldeniz, A. U., & Belli, S. Effect of the gutta-percha solvents on the microhardness and the roughness of human root dentine. Journal of Oral Rehabilitation. 2004;31(11):1145-8.

35.Wilcox LR. Thermafil retreatment with and without chloroform solvent. Journal of Endodontics. 1993;19(11):563-6.

36.Hülsmann M, Stotz S. Efficacy, cleaning ability and safety of different devices for gutta-percha removal in root canal retreatment. International Endodontic Journal. 1997;30(4):227-33.

37.Wolcott J F VHT, Hicks ML Thermafil retreatment using a new "system B" technique or a solvent. Journal of Endodontics. 1999;25:761-4.

38.Sae-Lim V, Indulekha D, Lim BK, Lee HL. Effectiveness of ProFile .04 Taper rotary instruments in endodontic retreatment. Journal of Endodontics. 2000;26(2):100-4.

39.Betti LV, Bramante CM. Quantec SC rotary instruments versus hand files for gutta-percha removal in root canal retreatment. International Endodontic Journal. 2001;34(7):514-9.

40.Betti LV, Bramante CM, de Moraes IG, Bernardineli N, Garcia RB. Efficacy of Profile .04 taper series 29 in removing filling materials during root canal retreatment-an in vitro study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. 2009;108(6):e46-e50.

41.Ferreira JJ, Rhodes JS, Pitt Ford TR. The efficacy of gutta-percha removal using ProFiles. International Endodontic Journal. 2001;34(4):267-74.

42.Vidučić D, Jukić S, Karlović Z, Božić Ž, Miletić I, Anić I. Removal of guttapercha from root canals using an Nd:YAG laser. International Endodontic Journal. 2003;36(10):670-3.

43.Hülsmann M, Bluhm V. Efficacy, cleaning ability and safety of different rotary NiTi instruments in root canal retreatment. International Endodontic Journal. 2004;37(7):468-76.

44.Ezzie E FA, Solomon E, Spears R, He J Efficacy of retreatment techniques for a resin-based root canal obturation material. Journal of Endodontics. 2006;32:341–4.

45.Hassanloo A, Watson P, Finer Y, Friedman S. Retreatment efficacy of the Epiphany soft resin obturation system. International Endodontic Journal. 2007;40(8):633-43.

46.Gu LS, Ling JQ, Wei X, Huang XY. Efficacy of ProTaper Universal rotary retreatment system for gutta-percha removal from root canals. International Endodontic Journal. 2008;41(4):288-95.

47.Horvath SD, Altenburger MJ, Naumann M, Wolkewitz M, Schirrmeister JF. Cleanliness of dentinal tubules following gutta-percha removal with and without solvents: A scanning electron microscopic study. International Endodontic Journal. 2009;42(11):1032-8.

48.Takahashi CM, Cunha RS, De Martin AS, Fontana CE, Silveira CFM, da Silveira Bueno CE. In Vitro Evaluation of the Effectiveness of ProTaper Universal Rotary Retreatment System for Gutta-Percha Removal with or without a Solvent. Journal of Endodontics. 2009;35(11):1580-3.

49.Dadresanfar B, Mehrvarzfar P, Saghiri MA, Ghafari S, Khalilak Z, Vatanpour M. Efficacy of two rotary systems in removing guttapercha and sealer from the root canal walls. Iranian Endodontic Journal. 2011;6(2):69-73. 50.Akhavan H, Azdadi YK, Azimi S, Dadresanfar B, Ahmadi A. Comparing the efficacy of Mtwo and D-RaCe retreatment systems in removing residual guttapercha and sealer in the root canal. Iranian Endodontic Journal. 2012;7(3):122-6.

51.Kfir A, Tsesis I, Yakirevich E, Matalon S, Abramovitz I. The efficacy of five techniques for removing root filling material: Microscopic versus radiographic evaluation. International Endodontic Journal. 2012;45(1):35-41.

52.Kumar MS, Sajjan GS, Satish K, Varma KM. A comparative evaluation of efficacy of protaper universal rotary retreatment system for gutta-percha removal with or without a solvent. Contemp Clin Dent. 2012;3(Suppl 2):S160-3.

53.Ma J, Al-Ashaw AJ, Shen Y, Gao Y, Yang Y, Zhang C, et al. Efficacy of ProTaper universal rotary retreatment system for gutta-percha removal from oval root canals: A micro-computed tomography study. Journal of Endodontics. 2012;38(11):1516-20.

54.Khalilak Z, Vatanpour M, Dadresanfar B, Moshkelgosha P, Nourbakhsh H. In vitro comparison of gutta-percha removal with h-file and protaper with or without chloroform. Iranian Endodontic Journal. 2013;8(1):6-9.

55.Muller GG, Schonhofen AP, Mora PM, Grecca FS, So MV, Bodanezi A. Efficacy of an organic solvent and ultrasound for filling material removal. Braz Dent J. 2013;24(6):585-90.

56.Reddy N, Admala SR, Dinapadu S, Pasari S, Reddy MP, Rao MSR. Comparative analysis of efficacy and cleaning ability of hand and rotary devices for gutta-percha removal in root canal retreatment: An in vitro study. Journal of Contemporary Dental Practice. 2013;14(4):635-43.

57.Mittal N, Jain J. Spiral computed tomography assessment of the efficacy of different rotary versus hand retreatment system. Journal of Conservative Dentistry. 2014;17(1):8-12.

58.Rached-Júnior FA, Sousa-Neto MD, Bruniera JFB, Duarte MAH, Silva-Sousa YTC. Confocal microscopy assessment of filling material remaining on root canal walls after retreatment. International Endodontic Journal. 2014;47(3):264-70.

59.Boariu M, Nica LM, Marinescu A, Ganea EV, Velea O, Pop DM, et al. Efficiency of eucalyptol as organic solvent in removal of gutta-percha from root canal fillings. Revista de Chimie. 2015;66(6):907-10.

60.Colaco AS, Pai VAR. Comparative evaluation of the efficiency of manual and rotary gutta-percha removal techniques. Journal of Endodontics. 2015;41(11):1871-4.

61.Jain M, Singhal A, Gurtu A, Vinayak V. Influence of ultrasonic irrigation and chloroform on cleanliness of dentinal tubules during endodontic retreatment-An invitro SEM study. Journal of Clinical and Diagnostic Research. 2015;9(5):ZC11-ZC5.

62.Barreto MS, da Rosa RA, Santini MF, Cavenago BC, Duarte MAH, Bier CAS, et al. Efficacy of ultrasonic activation of NaOCI and orange oil in removing filling material from mesial canals of mandibular molars with and without isthmus. Journal of Applied Oral Science. 2016;24(1):37-44.

63.Colombo AP, Fontana CE, Godoy A, De Martin AS, Kato AS, Rocha DG, et al. Efectiveness of the waveone and ProTaper D systems for removing

gutta-percha with or without a solvent. Acta Odontol Latinoam. 2016;29(3):262-7.

64.Latheef AA, Miglani R, Indira R, Kader MA, Nasim VS, Shamsuddin SV. Effect of Passive Ultrasonic Irrigation on the Cleanliness of Dentinal Tubules in Non-surgical Endodontic Retreatment with and without Solvent: A Scanning Electron Microscope Study. Journal of International Oral Health. 2016;8(7):753-9.

65.Bhagavaldas M, Diwan A, Kusumvalli S, Pasha S, Devale M, Chava D. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparative in vitro study. Journal of Conservative Dentistry. 2017;20(1):12-6.

66.Das S, De Ida A, Das S, Nair V, Saha N, Chattopadhyay S. Comparative evaluation of three different rotary instrumentation systems for removal of gutta-percha from root canal during endodontic retreatment: An in vitro study. Journal of Conservative Dentistry. 2017;20(5):311-6.

67.Fariniuk LF, Azevedo MAD, Carneiro E, Westphalen VPD, Piasecki L, Da Silva Neto UX. Efficacy of protaper instruments during endodontic retreatment. Indian Journal of Dental Research. 2017;28(4):400-5.

68.Campello AF, Almeida BM, Franzoni MA, Alves FRF, Marceliano-Alves MF, Rôças IN, et al. Influence of solvent and a supplementary step with a finishing instrument on filling material removal from canals connected by an isthmus. International Endodontic Journal. 2019;52(5):716-24.

69.Salgado KR, De Castro RF, Prado MC, Brandão GA, Da Silva JM, Da Silva EJNL. Cleaning ability of irrigants and orange oil solvent combination in the removal of root canal filling materials. European Endodontic Journal. 2019;4(1):33-7.

70.Garcia AJ, Kuga MC, Palma-Dibb RG, So MV, Matsumoto MA, Faria G, et al. Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. Journal of investigative and clinical dentistry. 2013;4(4):229-32.

71.Aranda-Garcia AJ, Kuga MC, Chavez-Andrade GM, Kalatzis-Sousa NG, Hungaro Duarte MA, Faria G, et al. Effect of final irrigation protocols on microhardness and erosion of root canal dentin. Microscopy research and technique. 2013;76(10):1079-83. 72.Zaparolli D, Saquy PC, Cruz-Filho AM. Effect of sodium hypochlorite and EDTA irrigation, individually and in alternation, on dentin microhardness at the furcation area of mandibular molars. Braz Dent J. 2012;23(6):654-8.

73.Pimenta JA, Zaparolli D, Pecora JD, Cruz-Filho AM. Chitosan: effect of a new chelating agent on the microhardness of root dentin. Braz Dent J. 2012;23(3):212-7.

74.Dineshkumar MK, Vinothkumar TS, Arathi G, Shanthisree P, Kandaswamy D. Effect of ethylene diamine tetra-acetic acid, MTAD, and HEBP as a final rinse on the microhardness of root dentin. Journal of conservative dentistry : JCD. 2012;15(2):170-3.

75.Sayin TC, Serper A, Cehreli ZC, Otlu HG. The effect of EDTA, EGTA, EDTAC, and tetracycline-HCl with and without subsequent NaOCl treatment on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(3):418-24.

76.Oliveira LD, Carvalho CA, Nunes W, Valera MC, Camargo CH, Jorge AO. Effects of chlorhexidine and sodium hypochlorite on the microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(4):e125-8.

77.Eldeniz AU, Erdemir A, Belli S. Effect of EDTA and citric acid solutions on the microhardness and the roughness of human root canal dentin. J Endod. 2005;31(2):107-10.

78.Slutzky-Goldberg I, Maree M, Liberman R, Heling I. Effect of sodium hypochlorite on dentin microhardness. Journal of Endodontics. 2004;30(12):880-2.

79.Cruz-Filho AM, Paula EA, Pecora JD, Sousa-Neto MD. Effect of different EGTA concentrations on dentin microhardness. Braz Dent J. 2002;13(3):188-90.

80.Baldasso FER, Roleto L, Silva VDD, Morgental RD, Kopper PMP. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Braz Oral Res. 2017;31:e40.

81.Saleh AA, Ettman WM. Effect of endodontic irrigation solutions on microhardness of root canal dentine. Journal of Dentistry. 1999;27(1):43-6.

82.Nikhil V, Jaiswal S, Bansal P, Arora R, Raj S, Malhotra P. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on

microhardness of the human radicular dentin. Journal of conservative dentistry : JCD. 2016;19(2):179-83.

83.Kara Tuncer A, Tuncer S, Siso SH. Effect of QMix irrigant on the microhardness of root canal dentine. Aust Dent J. 2015;60(2):163-8.

84.Taneja S, Kumari M, Anand S. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine. Journal of conservative dentistry : JCD. 2014;17(2):155-8.

85.Marcelino AP, Bruniera JF, Rached-Junior FA, Silva SR, Messias DC. Impact of chemical agents for surface treatments on microhardness and flexural strength of root dentin. Braz Oral Res. 2014;28.

86.Das A, Kottoor J, Mathew J, Kumar S, George S. Dentine microhardness changes following conventional and alternate irrigation regimens: An in vitro study. Journal of conservative dentistry : JCD. 2014;17(6):546-9.

87.Akcay I, Erdilek N, Sen BH. The efficacy of an experimental single solution versus alternate use of multiple irrigants on root dentin microhardness. J Clin Exp Dent. 2013;5(2):e83-8.

88.Tartari T, de Almeida Rodrigues Silva ESP, Vila Nova de Almeida B, Carrera Silva Junior JO, Faciola Pessoa O, Silva ESJMH. A new weak chelator in endodontics: effects of different irrigation regimens with etidronate on root dentin microhardness. Int J Dent. 2013;2013:743018.

89.Akbulut MB, Guneser MB, Eldeniz AU. Effects of fruit vinegars on root dentin microhardness and roughness. Journal of conservative dentistry : JCD. 2019;22(1):97-101.

90.Saghiri MA, Delvarani A, Mehrvarzfar P, Malganji G, Lotfi M, Dadresanfar B, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(6):e29-34.

91.De-Deus G, Paciornik S, Mauricio MH. Evaluation of the effect of EDTA, EDTAC and citric acid on the microhardness of root dentine. Int Endod J. 2006;39(5):401-7.

92.Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod. 2004;30(11):792-5.

93.Bello YD, Porsch HF, Farina AP, Souza MA, Silva E, Bedran-Russo AK, et al. Glycolic acid as the final irrigant in endodontics: Mechanical and cytotoxic effects. Materials science & engineering C, Materials for biological applications. 2019;100:323-9.

94.Saha SG, Sharma V, Bharadwaj A, Shrivastava P, Saha MK, Dubey S, et al. Effectiveness of Various Endodontic Irrigants on the Micro-Hardness of the Root Canal Dentin: An in vitro Study. Journal of clinical and diagnostic research : JCDR. 2017;11(4):Zc01-zc4.

95.Ballal NV, Khandewal D, Karthikeyan S, Somayaji K, Foschi F. Evaluation of Chlorine Dioxide Irrigation Solution on the Microhardness and Surface Roughness of Root Canal Dentin. The European journal of prosthodontics and restorative dentistry. 2015;23(3):P135-40.

96.Aslantas EE, Buzoglu HD, Altundasar E, Serper A. Effect of EDTA, sodium hypochlorite, and chlorhexidine gluconate with or without surface modifiers on dentin microhardness. J Endod. 2014;40(6):876-9.

97.Kalluru RS, Kumar ND, Ahmed S, Sathish ES, Jayaprakash T, Garlapati R, et al. Comparative Evaluation of the Effect of EDTA, EDTAC, NaOCI and MTAD on Microhardness of Human Dentin - An In-vitro Study. Journal of clinical and diagnostic research : JCDR. 2014;8(4):Zc39-41.

98.Ulusoy OI, Gorgul G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion. Australian endodontic journal : the journal of the Australian Society of Endodontology Inc. 2013;39(2):66-72.

99.Patil CR, Uppin V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: an in vitro study. Indian journal of dental research : official publication of Indian Society for Dental Research. 2011;22(1):22-7.

100.Ballal NV, Mala K, Bhat KS. Evaluation of the effect of maleic acid and ethylenediaminetetraacetic acid on the microhardness and surface roughness of human root canal dentin. J Endod. 2010;36(8):1385-8.

101.Ghisi AC, Kopper PM, Baldasso FE, Sturmer CP, Rossi-Fedele G, Steier L, et al. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness. Braz Dent J. 2014;25(5):420-4.

102.Khoroushi M, Tavakol F, Shirban F, Ziaei S. Influence of Intracanal Irrigants on Coronal Fracture Resistance of Endodontically Treated and Bleached Teeth: An In vitro Study. Contemp Clin Dent. 2017;8(4):552-7.

103.Gu LS, Huang XQ, Griffin B, Bergeron BR, Pashley DH, Niu LN, et al. Primum non nocere - The effects of sodium hypochlorite on dentin as used in endodontics. Acta biomaterialia. 2017;61:144-56.

104.Souza EM, Calixto AM, Lima CN, Pappen FG, De-Deus G. Similar influence of stabilized alkaline and neutral sodium hypochlorite solutions on the fracture resistance of root canal-treated bovine teeth. J Endod. 2014;40(10):1600-3.

105.Wang TF, Feng XW, Gao YX, Wang M, Wang YN, Sa Y, et al. Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2017;37(4):568-76.

106.Grigoratos D, Knowles J, Ng YL, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J. 2001;34(2):113-9.

107.Bhandary S, Kakamari S, Srinivasan R, Chandrappa MM, Nasreen F, Junjanna P. A comparative evaluation of the effect of 8% and 17% ethylenediaminetetraacetic acid exposure for 1 min and 10 min on the fracture resistance of endodontically treated roots: An in vitro study. Journal of conservative dentistry : JCD. 2017;20(1):21-4.

108.Cullen JK, Wealleans JA, Kirkpatrick TC, Yaccino JM. The effect of 8.25% sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus. J Endod. 2015;41(6):920-4.

109.Ayad MF, Bahannan SA, Rosenstiel SF. Influence of irrigant, dowel type, and root-reinforcing material on fracture resistance of thin-walled endodontically treated teeth. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2011;20(3):180-9.

110.Al-Kahtani AM, Al-Fawaz H, Al-Sarhan M, Al-Ali K. Fracture resistance of teeth obturated with RealSeal using two different chelating agents: an in vitro study. The journal of contemporary dental practice. 2010;11(1):E025-32.

111.Marending M, Paqué F, Fischer J, Zehnder M. Impact of Irrigant Sequence on Mechanical Properties of Human Root Dentin. Journal of Endodontics. 2007;33(11):1325-8.

112.Machnick TK, Torabinejad M, Munoz CA, Shabahang S. Effect of MTAD on flexural strength and modulus of elasticity of dentin. J Endod. 2003;29(11):747-50.

113.Sim TPC, Knowles JC, Ng YL, Shelton J, Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. International Endodontic Journal. 2001;34(2):120-32.

114.Lantigua Domínguez MC, Feliz Pedrinha V, Oliveira Athaide da Silva LC, Soares Ribeiro ME, Loretto SC, de Almeida Rodrigues P. Effects of different irrigation solutions on root fracture resistance: An in vitro study. Iranian Endodontic Journal. 2018;13(3):367-72.

115.Cecchin D, Soares Giaretta V, Granella Cadorin B, Albino Souza M, Vidal CMP, Paula Farina A. Effect of synthetic and natural-derived novel endodontic irrigant solutions on mechanical properties of human dentin. Journal of materials science Materials in medicine. 2017;28(9):141.

116.Cecchin D, Farina AP, Souza MA, Albarello LL, Schneider AP, Vidal CM, et al. Evaluation of antimicrobial effectiveness and dentine mechanical properties after use of chemical and natural auxiliary irrigants. J Dent. 2015;43(6):695-702.

117.Tiwari S, Nikhade P, Chandak M, Sudarshan C, Shetty P, Gupta NK. Impact of various irrigating agents on root fracture: An in vitro study. Journal of Contemporary Dental Practice. 2016;17(8):659-62.

118.Jungbluth H, Marending M, De-Deus G, Sener B, Zehnder M. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin. J Endod. 2011;37(5):693-6.

119.Mai S, Kim YK, Arola DD, Gu LS, Kim JR, Pashley DH, et al. Differential aggressiveness of ethylenediamine tetraacetic acid in causing canal wall erosion in the presence of sodium hypochlorite. J Dent. 2010;38(3):201-6.

120.Marending M, Luder HU, Brunner TJ, Knecht S, Stark WJ, Zehnder M. Effect of sodium hypochlorite on human root dentine--mechanical, chemical and structural evaluation. Int Endod J. 2007;40(10):786-93.

121.Ayranci F, Ayranci LB, Ozdogan A, Ozkan S, Peker MO, Aras MH. Resistance to vertical root fracture of apicoected teeth using different devices during two root canal irrigation procedures. Lasers in medical science. 2018;33(8):1685-91.

122.Khoroushi M, Ziaei S, Shirban F, Tavakol F. Effect of Intracanal Irrigants on Coronal Fracture Resistance of Endodontically Treated Teeth Undergoing Combined Bleaching Protocol: An In Vitro Study. Journal of dentistry (Tehran, Iran). 2018;15(5):266-74.

123.John C, Lost C, Elayouti A. Ultrasonic monitoring of the effect of sodium hypochlorite on the elasticity of dentine. Int Endod J. 2013;46(5):477-82.

124.Sobhani OE, Gulabivala K, Knowles JC, Ng YL. The effect of irrigation time, root morphology and dentine thickness on tooth surface strain when using 5% sodium hypochlorite and 17% EDTA. International Endodontic Journal. 2010;43(3):190-9.

125.Rajasingham R, Ng YL, Knowles JC, Gulabivala K. The effect of sodium hypochlorite and ethylenediaminetetraacetic acid irrigation, individually and in alternation, on tooth surface strain. International Endodontic Journal. 2010;43(1):31-40.

126.Goldsmith M, Gulabivala K, Knowles JC. The effect of sodium hypochlorite irrigant concentration on tooth surface strain. Journal of Endodontics. 2002;28(8):575-9.

127.Peters MD GC, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare. 2015;13:141-6.

128.Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res Methodol. 2018 Jan 10;18(1):5.

# 8. APÊNDICE

**Protocolo Artigo 1** - Effects of root canal irrigants on mechanical properties of endodontically treated teeth: a scoping review.

Version 1 Study protocol 06/21/2019

## **Study protocol**

Effects of root canal irrigants on mechanical properties of endodontically treated teeth: a scoping review protocol

Lara Dotto<sup>a</sup>, Rafael Sarkis Onofre<sup>a</sup>, Gabriel Kalil Rocha Pereira<sup>a</sup>.

<sup>a</sup>Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil

Corresponding author: Gabriel Kalil Rocha Pereira Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil gabriel.pereira@imed.edu.br

## REGISTRATION

This study will not be registered in a registry database (e.g., PROSPERO) due to the nature of the inclusion criteria (in vitro studies) and nature of study design (Scoping review).

## **OBJECTIVE**

To identify if root canal irrigants influence the mechanical properties of endodontically treated teeth and which properties could be affected through a scoping review.

#### **METHODS**

The protocol of this study is based on the framework proposed by Peters et al., 2015, according to The Joana Briggs Institute (Peters et al., 2015).

#### Inclusion criteria

We will select studies in dentistry that considered the effect of irrigant solutions at the mechanical properties of endodontically treated teeth. It will be included studies that

evaluated the effect of at least one irrigant solution on dentin, regardless of the teeth type (human, bovine and other animals) and study design. Study groups testing associated techniques such as the use of laser therapy or agitation protocols will not be considered.

# Search

The search will be performed in two databases: MEDLINE (PubMed) and Scopus. We will be limited to articles written in English language. The search strategy will be based on Mesh terms of PubMed and specific terms of Scopus using the following keywords (table 1).

Table 1 – Search strategy

# PUBMED

"Tooth, Nonvital" [Mesh] OR "Tooth, Nonvital" OR "Nonvital Tooth" OR "Tooth, Devitalized" OR "Devitalized Tooth" OR "Tooth, Pulpless" OR "Pulpless Tooth" OR "Teeth, Pulpless" OR "Pulpless Teeth" OR "Teeth, Devitalized" OR "Devitalized Teeth" OR "Teeth, Nonvital" OR "Nonvital Teeth" OR "Teeth, Endodontically-Treated" OR "Endodontically-Treated Teeth" OR "Teeth, Endodontically Treated" OR "Tooth, Endodontically-Treated" OR "Endodontically-Treated Tooth" OR "Tooth, Endodontically Treated" OR "endodontically-Treated Tooth" OR "Tooth, Endodontically Treated" OR "dentin\*" AND "Root Canal Irrigants" [Mesh] OR "Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCI" OR "CHX" OR "ethylenediamine tetraacetic acid" AND "fracture" OR "strength" OR "resistance" OR "fatigue" OR "mechanical properties" OR "flexural strength" OR "microhardness" OR "modulus of elasticity" NOT "bond"

# **SCOPUS**

"Tooth, Nonvital" OR "Nonvital Tooth" OR "Tooth, Devitalized" OR "Devitalized Tooth" OR "Tooth, Pulpless" OR "Pulpless Tooth" OR "Teeth, Pulpless" OR "Pulpless Teeth" OR "Teeth, Devitalized" OR "Devitalized Teeth" OR "Teeth, Nonvital" "Teeth, Endodontically-Treated" OR "Nonvital Teeth" OR OR "Endodontically-Treated Teeth" OR "Teeth, Endodontically Treated" OR "Tooth, Endodontically-Treated" "Endodontically-Treated Tooth" OR OR "Tooth, Endodontically Treated" AND "Root Canal Irrigants" OR "Canal Irrigants, Root" "Root Canal Medicaments" OR "Irrigants, Root Canal" OR OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" "Sodium hypochlorite" AND OR "fracture" OR "strength" OR "resistance" OR "fatigue" OR "mechanical properties" OR "flexural strength" OR "microhardness" OR "modulus of elasticity" AND NOT bond AND (LIMIT-TO ( DOCTYPE, "ar")) AND (LIMIT-TO(SUBJAREA, "DENT")

# Screening

Initially, the search will be undertaken using EndNote program (EndNote X9, Thomson Reuters, New York, NY). Two researches will identify articles by first analyzing titles and abstracts for relevance and the presence of the eligibility criteria. Retrieved records

will be classified as include, exclude, or uncertain. The full-text articles of the included and uncertain records will be selected for further eligibility screening by the same 2 reviewers. Discrepancies in screening of titles/abstracts and full text articles will be resolved through a discussion. In case of disagreement, the opinion of a third reviewer will be garnered.

#### Charting the results

We will create a form using the Excel program, which will be test by three reviewers to reach a consensus of data collections. Then, one of the reviewers will extract the data and another will check. The following data will be collected: study design; irrigation solutions tested; concentration of the solution; exposure time; final rinse; teeth type (human, bovine or other animal); teeth conditions - if were split, filled, restored, using a dowel and if so the type of dowel); mechanical properties evaluated and main findings. In case of identification of reviews (systematic or not), the following data will be collected: included articles grouped by mechanical test, main findings, level of evidence generated reported by authors and conclusions.

#### Data analysis

A descriptive analysis will be performed considering the study design and different irrigants tested using tables, graphs and maps.

#### REFERENCES

Peters MDJ, Godfrey CM, McInerney, Khalil H, Parker D, and Baldini Soares C. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015. 13(3):141-146. Available: <u>http://www.ncbi.nlm.nih.gov/pubmed/26134548</u>

**Protocolo Artigo 2** - Effectiveness of solvents for gutta-percha dissolution/removal during endodontic retreatments: a scoping review

#### **Study protocol**

Effectiveness of solvents for gutta-percha dissolution/removal during endodontic retreatments: a scoping review

Lara Dotto<sup>a</sup>, Rafael Sarkis Onofre<sup>a</sup>, Ataís Bacchi<sup>a</sup>, Gabriel Kalil Rocha Pereira<sup>a</sup>

<sup>a</sup>Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil

Corresponding author: Gabriel Kalil Rocha Pereira Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil <u>gabrielkrpereira@hotmail.com</u>

# REGISTRATION

This study will not be registered in a registry database (e.g., PROSPERO) due to the nature of the inclusion criteria (in vitro studies) and nature of study design (Scoping review).

## **OBJECTIVE**

To assess and discuss the necessity and effectiveness of using solvents for guttapercha dissolution/removal during endodontic retreatments in comparison to the effect of mechanical instrumentation executed without solvents, through a scoping review.

### **METHODS**

The protocol of this study is based on the framework proposed by Peters et al., 2015, according to The Joana Briggs Institute guidelines (Peters et al., 2015).

## Inclusion criteria

We will select studies in dentistry that considered the effectiveness of solvents in guttapercha dissolutions in endodontic retreatments, which compared the performance of such agents to the use of instrumentation techniques without solvents. It will be included studies that evaluated the effect of at least one solvent solution on gutta-percha, regardless of the teeth type (human, bovine and other animals) and regardless of how the outcome was measured. In relation to the adopted studies design, it will be included reviews which discussed the gutta-percha removal/dissolution on endodontic retreatment. Study groups testing others root filling materials (not gutta percha) will not be considered.

## Search

The search will be performed in two databases: MEDLINE (PubMed) and Scopus, limited to articles written in English language. The search strategy will be based on Mesh terms of PubMed and specific terms of Scopus using the following keywords (table 1).

## *Table 1 – Search strategy*

| PUBMED                                                                       |
|------------------------------------------------------------------------------|
| "Solvent" OR "Solvents" OR "Gutta-percha Solvent" OR "Chloroform" OR         |
| "Eucalyptol" OR "Orange Oil" OR "Endosolv E" OR "Xylene" AND                 |
| "GuttaPercha"[Mesh] OR "Gutta-Percha removal" NOT "Sealing" NOT "Bond"       |
| SCOPUS                                                                       |
| "Solvent" OR "Solvents" OR "Gutta-percha Solvent" OR "Chloroform" OR         |
| "Eucalyptol" OR "Orange Oil" OR "Endosolv E" OR "Xylene" AND "GuttaPercha"   |
| [mesh] OR "Gutta-Percha removal" AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT- |
| TO ( DOCTYPE, "re" ) ) AND ( LIMIT-TO ( LANGUAGE, "English" ) )              |

## Screening

Initially, the search will be undertaken using EndNote program (EndNote X9, Thomson Reuters, New York, NY). Two researches will identify articles by first analyzing titles and abstracts for relevance and the presence of the eligibility criteria. Retrieved records will be classified as include, exclude, or uncertain. The full-text articles of the included and uncertain records will be selected for further eligibility screening by the same 2 reviewers. Discrepancies in screening of titles/abstracts and full text articles will be resolved through a discussion. In case of disagreement, the opinion of a third reviewer will be garnered.

### Charting the results

We will create a form using the Excel program, which will be tested by three reviewers to reach a consensus of data collections. Then, one of the reviewers will extract the data and another will check it. The following data will be collected: study design; method/technique used for obturation; cement used for obturation; method/technique used for instrumentation during retreatment (manual or rotary); solvent solutions tested; exposure time; moment of use of the solvent (final rinse/ during instrumentation); control groups used, method to access the presence of gutta percha; characteristics of the teeth (human, bovine or other animal/ straight or curved roots, among others); and study main findings. In case of identification of reviews (systematic or not), the following data will be collected: inclusion criteria, number of included articles, main findings, level of evidence generated reported by authors and conclusions.

#### Data analysis

A descriptive analysis will be performed considering the study design and different solvents tested using tables, graphs and maps.

#### REFERENCES

Peters MDJ, Godfrey CM, McInerney, Khalil H, Parker D, and Baldini Soares C. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015. 13(3):141-146. Available: <u>http://www.ncbi.nlm.nih.gov/pubmed/26134548</u> **Protocolo Artigo 3** - Effect of root canal irrigants on push-out bond strength of endodontic sealers: a systematic review

#### **Study protocol**

Effect of root canal irrigants on push-out bond strength of endodontic sealers: a systematic review protocol

Lara Dotto<sup>a</sup>, Alvin Tomm<sup>a</sup>, Gabriel Kalil Rocha Pereira<sup>b</sup>, Ataís Bacchi<sup>a</sup>, Rafael Sarkis Onofre<sup>a</sup>

<sup>a</sup>Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil

<sup>b</sup>Graduate Program in Dentistry – Federal University of Santa Maria, Brazil

Corresponding author:

Rafael Sarkis Onofre

Graduate Program in Dentistry – Meriodional Faculty/IMED, Passo Fundo, Brazil rafaelonofre@gmail.com

#### REGISTRATION

This study will not be registered in a registry database (e.g., PROSPERO) due to the nature of the inclusion criteria (in vitro studies).

## **OBJECTIVE**

To assess what are the effects of root canal irrigants on push-out bond strength of endodontic sealers in endodontic treated teeth, through a systematic review.

### **METHODS**

The reporting of protocol of this study is based on the PRISMA for systematic review protocols (Moher et al., 2015).

## Inclusion criteria

We will select studies in dentistry, written in English language, that considered the effects of root canal irrigants on push-out bond strength of endodontic sealers, which compared the influence of such agents during the endodontic treatment and/or at final irrigation, regardless if chelating agents or surfactants were used, regardless of the teeth type (human or animal) and regardless of the instrumentation type or obturation method. The outcome (bond strength) should be measured by the push-out test. In relation to the adopted studies design, only in vitro studies will be included. Study groups testing others root filling materials (not gutta percha) will not be considered. We will consider groups that the use irrigants with passive and active irrigation.

#### Search

The search will be performed in two databases: MEDLINE (PubMed) and Scopus, limited to articles written in English language. The search strategy will be based on Mesh terms of PubMed and specific terms of Scopus using the following keywords (table 1). We will perform a manual search in the references of the included articles in order to identify additional studies.

## Table 1 – Search strategy

# PUBMED

("Root Canal Irrigants"[Mesh] OR "Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCl" OR "CHX" OR "ethylenediamine tetraacetic acid")) AND ("sealer" OR "canals sealer" OR "Root Canal Sealer")) AND push out bond strength)

## **SCOPUS**

"Root Canal Irrigants" OR "Canal Irrigants, Root" OR "Irrigants, Root Canal" OR "Root Canal Medicaments" OR "Canal Medicaments, Root" OR "Medicaments, Root Canal" OR "Chlorhexidine" OR "EDTA" OR "Sodium hypochlorite" OR "chemical irrigant" OR "NaOCl" OR "CHX" OR "ethylenediamine tetraacetic acid" AND "sealer" OR "canals sealer" OR "Root Canal Sealer" AND push AND out AND bond AND strength AND ( LIMIT-TO ( SUBJAREA , "DENT" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE , "re" ) )

#### Screening

Initially, the search will be undertaken using EndNote program (EndNote X9, Thomson Reuters, New York, NY). Two researches will identify articles by first analyzing titles and abstracts for relevance and the presence of the eligibility criteria. Retrieved records will be classified as include, exclude, or uncertain. The full-text articles of the included and uncertain records will be selected for further eligibility screening by the same 2 reviewers. Discrepancies in screening of titles/abstracts and full text articles

will be resolved through a discussion. In case of disagreement, the opinion of a third reviewer will be garnered.

#### Data Extraction

We will create a form using the Excel program, which will be tested by three reviewers to reach a consensus of data collections. Then, one of the reviewers will extract the data and another will check it. The following data will be collected: author, year, irrigant solutions protocol used during and/or on final endodontic treatment (including concentration, how many times, amount used and whether surfactants were used with irrigant solutions); chelating agents used during the treatment; method/technique used for instrumentation during retreatment (manual or rotary); method/technique used for obturation;sealer used for obturation (calcium silicate-based, epoxy resinbased,siliconebased and methacrylate-based sealers); control groups used; type of the teeth (human or animal); time between obturation and push-out test; and study main findings and results of push-out test.

### **Risk of Bias**

The risk of bias of included studies will be assessed based on previous studies (SarkisOnofre et al., 2014; Schestatsky et al., 2019). The following parameters will be considered: teeth randomization, materials used according to the manufacturer's instruction, storage of teeth permanently in hydric solution, blind of outcome assessment. The parameters used were discussed by the researchers involved and judgment will be carried out by one researcher and verified by another one. Assessment of risk of bias will be conducted using Review Manager 5.3 software.

## Data analysis

Our first to plan is to perform a descriptive analysis (tables and graphs) identifying the effects of root canal irrigants on push-out bond strength of endodontic sealers considering different techniques and substances used. Our second plan is to perform a subgroup analysis considering different groups of sealer and the influence of different method/technique used for obturation.

#### REFERENCES

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

Sarkis-Onofre R, Skupien JA, Cenci MS, Moraes RR, Pereira-Cenci T. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper Dent. 2014;39(1):E31-44.

Schestatsky R, Dartora G, Felberg R, Spazzin AO, Sarkis-Onofre R, Bacchi A, Pereira GKR. Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. J Mech Behav Biomed Mater. 2019;90:306-312